Math, asked by subiyasalim1018, 6 months ago

2. In a quadrilateral field ABCD, angleB = 90°, AB = 80 m, BC = 150 m, CD = 120 m and
DA = 250 m. Find the area of the field in hectares. Find the price of the field if
it costs Rs12,000/ hectare.​

Answers

Answered by samritimohan
2

Answer:

Hey please mark my answer as brainlist.

Attachments:
Answered by vanshikavikal448
173

\huge \bold \color{green} \mid \mid{ \underline{ \underline \red{required \: answer}}} \mid \mid</p><p>

\bold {  {\underline{ \underline  \orange{given}}}}</p><p>

angle B = 90°

AB = 80m

BC = 150m

CD = 120m

DA = 250m

\bold {  {\underline{ \underline  \orange{answer}}}}</p><p> \:

Rs. 18,000

\bold {  {\underline{ \underline  \orange{solution}}}}</p><p> \:

In right angle ∆ ABC

AB² + BC² = AC² ( by Pythagoras theorem )

=> (80)² + (150)² = AC²

=> 6400 + 22500 = AC²

=> 28900 = AC

=> AC = 170m

ar( \triangle) =  \frac{1}{2}  \times b \times h \\  \\  \implies ar(ABC) =  \frac{1}{2}  \times 150 \times 80 \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 150 \times 40 \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:     = 6000 {m}^{2} ............ar(i)

now we have to find area of ∆ACD by heron's formula

ar( \triangle) =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\ s =  \frac{a + b + c}{2}

so in triangle ACD

s =  \frac{AC + CD+ DA}{2}  \\  \\ s =  \frac{170 + 120 + 250}{2}  \\  \\ s =  \frac{540}{2}  \\  \\ s = 270

then area of triangle ACD,

ar(acd) =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  =  \sqrt{270(270 - 250)(270 - 120)(270 - 170)}   \\  \\  =  \sqrt{270 \times 20 \times 150 \times 100} \\  \\  =  \sqrt{27 \times 10 \times 2 \times 10 \times 15 \times 10 \times 10 \times 10}   \\  \\  = 100 \sqrt{27 \times 2 \times15 \times 10 }  \\  \\  = 100 \sqrt{3 \times 3 \times 3 \times 2 \times 3 \times 5 \times 2 \times 5}  \\  \\  = 100 \times 3 \times 3 \times 2 \times 5 \\  \\  = 9000 {m}^{2} ............ar(ii)

now area of quadrilateral ABCD is;

ar(ABCD) = ar(ABC) + ar(ACD)

 \implies \: ar(abcd) = 6000 + 9000 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  15000 {m}^{2}

so area of quadrilateral field is 15000m²

we know that..

1 hectare = square metre / 10000

 \bold {\:so \: 15000 {m}^{2}  = 1.5hectare}

so area of field is 1.5 Hectare

cost = 12,000 / hectare

then price of field is;

 \bold{1.5 \times cost \: of \: field} \\  \\   \bold{\implies  \: price \:  = 1.5 \times 12000} \\  \\   \bold{\implies \: price \: of \: field \:  = 18000 \: rs }

hence, price of the field is Rs. 18000

Attachments:
Similar questions