Math, asked by Nivi2103, 5 months ago

2. In a triangle OMP , right angled at M if OM = 5cm, MP = 12cm. find all the ratios of angle MOP ( let tetha )​

Answers

Answered by amansharma264
2

EXPLANATION.

In a triangle OMP.

Right angled at M.

⇒ OM = 5 cm.

⇒ MP = 12 cm.

Using Pythagoras theorem in this question, we get.

⇒ H² = P² + B².

Hypotenuse > Perpendicular > Base.

⇒ (OP)² = (MP)² + (OM)².

⇒ (OP)² = (12)² + (5)².

⇒ (OP)² = 144 + 25.

⇒ (OP)² = 169.

⇒ (OP) = 13 cm.

To find : All the ratios of angle MOP.

Sinθ = Perpendicular/Hypotenuse.

⇒ sinθ = PM/OP,

sinθ = 12/5.

cosθ = Base/Hypotenuse.

⇒ cosθ = OM/OP.

cosθ = 5/13.

tanθ = Perpendicular/Base.

⇒ tanθ = PM/OM.

tanθ = 12/5.

cosecθ = Hypotenuse/Perpendicular.

⇒ cosecθ = OP/PM.

cosecθ = 13/12.

secθ = Hypotenuse/Base.

⇒ secθ = OP/OM.

secθ = 13/5.

cotθ = Base/Perpendicular.

⇒ cotθ = OM/PM.

cotθ = 5/12.

Attachments:
Similar questions