2. In a triangle OMP , right angled at M if OM = 5cm, MP = 12cm. find all the ratios of angle MOP ( let tetha )
Answers
Answered by
2
EXPLANATION.
In a triangle OMP.
Right angled at M.
⇒ OM = 5 cm.
⇒ MP = 12 cm.
Using Pythagoras theorem in this question, we get.
⇒ H² = P² + B².
Hypotenuse > Perpendicular > Base.
⇒ (OP)² = (MP)² + (OM)².
⇒ (OP)² = (12)² + (5)².
⇒ (OP)² = 144 + 25.
⇒ (OP)² = 169.
⇒ (OP) = 13 cm.
To find : All the ratios of angle MOP.
Sinθ = Perpendicular/Hypotenuse.
⇒ sinθ = PM/OP,
⇒ sinθ = 12/5.
cosθ = Base/Hypotenuse.
⇒ cosθ = OM/OP.
⇒ cosθ = 5/13.
tanθ = Perpendicular/Base.
⇒ tanθ = PM/OM.
⇒ tanθ = 12/5.
cosecθ = Hypotenuse/Perpendicular.
⇒ cosecθ = OP/PM.
⇒ cosecθ = 13/12.
secθ = Hypotenuse/Base.
⇒ secθ = OP/OM.
⇒ secθ = 13/5.
cotθ = Base/Perpendicular.
⇒ cotθ = OM/PM.
⇒ cotθ = 5/12.
Attachments:
Similar questions