Math, asked by Godzillaof, 4 months ago

2. In Fig. 6.14, lines XY and MN intersect at O. If Z POY = 90° and a : b=2:3, find C.

Please do it in notebook and show your work.​

Attachments:

Answers

Answered by BlessOFLove
2

{\tt{Question}}\: \purple☟

In Fig. 6.14, lines XY and MN intersect at O. If Z POY = 90° and a : b=2:3, find C.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\red&#9998{\tt{Answer}}\: \orange☟

⠀⠀	&#9679\purple{\bf{See \:the \:attachment}}\red{⇑}

	&#9679\orange{\bf{Question\: solved}}\: \green✔

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

All necessary formulas⤵️

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\purple{\boxed{\bf{Angle\:sum\: property}}}

Angle sum property of triangle states that the sum of interior angles of a triangle is 180°. Proof .Thus, the sum of the interior angles of a triangle is 180°.

\blue{\tt{Example:-}}

\red{\boxed{a+b+c=180°}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange{\boxed{\bf{Alternate\: interior\:angle}}}

Alternate interior angles are angles formed when two parallel or non-parallel lines are intersected by a transversal.Alternate interior angles are equal if the lines intersected by the transversal are parallel.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange\star{\bf{\red{\underbrace{complementary \:angle}}}}\red\star

The sum of 2 numbers=90°

example  a−b=90°

how to find "a" if a is not mentioned

\red{\underbrace{\bf{\orange{Given࿐}}}}

a= \: ?

b = 40

a+40=\:90°

a=90-40°

a=50°

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\pink\star{\bf{\purple{\underbrace{supplementary\: angle}}}}\red\star

The sum of two numbers= \:180°

example a+b=180°

how to find "a" if a is not mentioned

Given

a= \:?

b =\: 40

a+40=180°

a=180-40°

a=140°

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange\star{\bf{\green{\underbrace{Adjacent \:angle}}}}\red\star

If there is a common ray between {\bf&#x2220}a and {\bf&#x2220}b so it is a adjacent angle.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange\star{\bf{\blue{\underbrace{Vertical\: opposite\: angle }}}}\red\star

Vertical angles are pair angles formed when two lines intersect. Vertical angles are sometimes referred to as vertically opposite angles because the angles are opposite to each other.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\orange\star{\bf{\orange{\underbrace{lenear\: pair \:of\: angles}}}}\red\star

Here {\bf&#x2220}a+{\bf&#x2220}b=180°.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Answered by OoINTROVERToO
0

Step-by-step explanation:

Let ∠ a = 2x, & ∠b = 3x

We know that :- Sum of angle in linear pair always equal to 180°

  • ∠XOM + ∠MOP + ∠POY = 180°
  • ∠b + ∠a + ∠POY = 180° [∠POY = 90°]
  • 3x + 2x + 90° = 180°
  • 5x = 90°
  • x = 18°

  • a = 2x = 2 × 18 = 36°
  • b = 3x = 3 × 18 = 54°

MN is a straight line, so again

  • ∠b + ∠c = 180°
  • 54° + ∠c = 180°
  • ∠c = 180° − 54°
  • ∠c = 126°
Attachments:
Similar questions