Math, asked by nishthac241, 1 month ago

2. In Fig. 6.29, if AB || CD, CD || EF and y: Z=3:7, find x. fig. 6.29​

Attachments:

Answers

Answered by CelestialCentrix
81

Question

 \sf \: In  \: Fig. 6.29, if  \: AB || CD, CD || EF  \: and  \: y : z = 3 : 7, find \:  x.

Solution:

 \sf \: Given, y : z = 3 : 7 \\  \sf \: Let  ∠ y = 3a\\  \sf \:Then ∠z  = 7b\\  \sf \:∠x \:  and \:  ∠z  \: are \:  alternate  \: interior \:  angles \:  of \:  parallel \:  lines \:  so  \: that\\  \sf \:∠x = ∠z  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: →①\\  \sf \:Sum  \: of \:  interior \:  angle \:  on  \: the \:  same \:  side = 180°\\  \sf \:x + y = 180°\\  \sf \:putting \:  value \:  of \:  x  \: from  \: equation ①\\  \sf \:z + y = 180°\\  \sf \:putting \:  the  \: value \:  of  \: z  \: and  \: y \\  \sf \:7a + 3a = 180°\\  \sf \:10 a    = 180°a =  \frac{180}{10} \\  \sf \:a = 18 \\ \\  \sf \:y = 3a \:  \:  \:  = 3x18  \:  \:  \:  \:  \:  = 54°\\  \sf \:z = 7a  \:  \:  \: = 7x18 \:  \:  \:  \:  \:  \:  =  126°\\  \sf \:x = z  = 126°

 \bold \red{Celestial} \bold{Centrix}

Answered by Shreyanshijaiswal81
5

It is known that AB CD and CDEF

As the angles on the same side of a transversal line sums up to 180°,

x + y = 180° —–(i)

Also,

O = z (Since they are corresponding angles)

and, y +O = 180° (Since they are a linear pair)

So, y+z = 180°

Now, let y = 3w and hence, z = 7w (As y : z = 3 : 7)

∴ 3w+7w = 180°

Or, 10 w = 180°

So, w = 18°

Now, y = 3×18° = 54°

and, z = 7×18° = 126°

Now, angle x can be calculated from equation (i)

x+y = 180°

Or, x+54° = 180°

∴ x = 126°

 \:  \:  \:  \:

Similar questions