Math, asked by seema19november, 3 months ago



2. In Fig. 6.40, 2 X = 62°, Z XYZ = 54º. If YO and ZO are the bisectors of Z XYZ and
ZXZY respectively of AXYZ, find Z OZY and Z YOZ.​

Answers

Answered by anshpandey7a
22

\huge\underline\pink{Required\:Answer}

As the sum of all interior angles of a triangle is 180º, therefore, for ΔXYZ,

∠X + ∠XYZ + ∠XZY = 180º

62º + 54º + ∠XZY = 180º

∠XZY = 180º − 116º

∠XZY = 64º

∠OZY = 32º (OZ is the angle bisector of ∠XZY)

Similarly, ∠OYZ == 27º

Using angle sum property for ΔOYZ, we obtain

∠OYZ + ∠YOZ + ∠OZY = 180º

27º + ∠YOZ + 32º = 180º

∠YOZ = 180º − 59º

∠YOZ = 121º

Attachments:
Similar questions