Math, asked by minhajurrehman24, 7 months ago

2. In figure 3.57, PQRS is cyclic.
side PQ=side RQ. ZPSR = 110°, Find-
(1) measure of Z POR
(2) m(arc PQR)
(3) m(arc QR)
(4) measure of Z PRO


plz follow me​

Answers

Answered by aadityamishra2970
11

Step-by-step explanation:

PQRS is a cyclic quadrilateral. [Given]  ∴ ∠PSR + ∠PQR = 180° [Opposite angles of a cyclic quadrilateral are supplementary] ∴ 110° + ∠PQR = 180°  ∴ ∠PQR = 180° – 110°  ∴ m ∠PQR = 70°  ii. ∠PSR= 1/2 m (arcPQR) [Inscribed angle theorem]  110°= 1/2 m (arcPQR)  ∴ m(arc PQR) = 220°  iii. In ∆PQR,  side PQ ≅ side RQ [Given]  ∴ ∠PRQ = ∠QPR [Isosceles triangle theorem]  Let ∠PRQ = ∠QPR = x Now, ∠PQR + ∠QPR + ∠PRQ = 180° [Sum of the measures of angles of a triangle is 180°]  ∴ ∠PQR + x + x= 180°  ∴ 70° + 2x = 180° 2x = 180° – 70°  ∴ 2x = 110° ∴ x = 100°/2 = 55° ∴ ∠PRQ = ∠QPR = 55°….. (i)  But, ∠QPR = 1/2 nm(arc QR) [Inscribed angle theorem]  ∴ 55° = 1/2 m(arc QR)  ∴ m(arc QR) = 110°  iv. ∠PRQ = ∠QPR =55° [From (i)]  ∴ m ∠PRQ = 55° 

Answered by yadavmuskanyadav702
0

Answer:

tfhghhjkjjjv bhgggggggccvbjj

Similar questions