Math, asked by xxbrainlyyxx98, 3 months ago

2. In the figure /_ PQR is a right triangle.

• See the length of the PQ
• See the length of the QR​

Attachments:

Answers

Answered by Anonymous
6

\red{\underline{\texttt{Given:}}}

\sf{\overline{PR} = 30 \: cm}

\sf{\angle P = 30 \degree}

\green{\underline{\texttt{To\:find:}}}

\sf{\overline{PQ}, \overline{QR}}

\red{\underline{\texttt{Solution:}}}

\textsf{We know that:}

\begin{gathered}\sf{sin \: \theta = \frac{Opposite Side}{Hypotenuse}}\\\end{gathered}

\begin{gathered}\sf{ sin 30 = \frac{\overline{RQ}}{\overline{PR}}}\\\end{gathered}

</p><p>\begin{gathered}\sf{ \frac{1}{2} = \frac{\overline{RQ}}{12}}\\\end{gathered}

</p><p>\begin{gathered}\sf{ \overline{RQ} = 6 \: cm} \\\end{gathered}

\textsf{We also know that:}

\begin{gathered}\sf{cos \: \theta = \frac{Adjacent Side}{Hypotenuse}}\\\end{gathered}

\begin{gathered}\sf{ cos 30 = \frac{\overline{PQ}}{\overline{PR}}}\\\end{gathered}

\begin{gathered}\sf{ \frac{\sqrt{3}}{2} = \frac{\overline{PQ}}{12}}\\\end{gathered}

\sf{ \overline{PQ} = 6\sqrt{3} \: cm}

\textsf{Thus:}

\boxed{\sf{\pink{\overline{RQ} = 6\: cm, \overline{PQ} = 6\sqrt{3}\: cm}}}

Answered by Anonymous
3

Answer:

\huge{\underline{\mathtt{\red{A}\pink{N}\green{S}\blue{W}\purple{E}\orange{R}}}}

Given:

\sf{\overline{PR} = 30 \: cm}

\sf{\angle P = 30 \degree}

\green{\underline{\texttt{To\:find:}}}

\sf{\overline{PQ}, \overline{QR}}

\red{\underline{\texttt{Solution:}}}

\textsf{We know that:}

\begin{gathered}\begin{gathered}\sf{sin \: \theta = \frac{Opposite Side}{Hypotenuse}}\\\end{gathered}\end{gathered}

\begin{gathered}  \begin{gathered}\sf{ \frac{1}{2} = \frac{\overline{RQ}}{12}}\\\end{gathered}\end{gathered} </strong></p><p><strong>[tex]\begin{gathered}  \begin{gathered}\sf{ \frac{1}{2} = \frac{\overline{RQ}}{12}}\\\end{gathered}\end{gathered}

\begin{gathered}  \begin{gathered}\sf{ \overline{RQ} = 6 \: cm} \\\end{gathered}\end{gathered}

\textsf{We also know that:}

\begin{gathered}\begin{gathered}\sf{cos \: \theta = \frac{Adjacent Side}{Hypotenuse}}\\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\sf{ cos 30 = \frac{\overline{PQ}}{\overline{PR}}}\\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\sf{ \frac{\sqrt{3}}{2} = \frac{\overline{PQ}}{12}}\\\end{gathered}\end{gathered}

\sf{ \overline{PQ} = 6\sqrt{3} \: cm}

\textsf{Thus:}

\boxed{\sf{\pink{\overline{RQ} = 6\: cm, \overline{PQ} = 6\sqrt{3}\: cm}}}

Similar questions