2. In the given figure, BO and CO are the bisectors of the exterior angles meeting each
other at O. If A = 70° find BOC.
please answer in full and fast
Attachments:
Answers
Answered by
0
ANSWER
∵sumofanglesonastraightline=180
∘
=>∠ABC=180
∘
−2θ
and∠ACB=180
∘
−2α
In△ABC
=>∠A+∠ABC+∠ACB=180
∘
=>70
∘
+180−2θ+180−2α=180
=>250
∘
−(2θ+2α)=0
=>2(θ+α)=250
∘
=>θ+α=125
∘
−(1)
In△BOC
=>∠CBO+∠BCO+∠BOC=180
∘
=>θ+α+∠BOC=180
∘
=>125
∘
+∠BOC=180
∘
−from(1)
∴∠BOC=55
∘
Please mark me as brainliest
∵sumofanglesonastraightline=180
∘
=>∠ABC=180
∘
−2θ
and∠ACB=180
∘
−2α
In△ABC
=>∠A+∠ABC+∠ACB=180
∘
=>70
∘
+180−2θ+180−2α=180
=>250
∘
−(2θ+2α)=0
=>2(θ+α)=250
∘
=>θ+α=125
∘
−(1)
In△BOC
=>∠CBO+∠BCO+∠BOC=180
∘
=>θ+α+∠BOC=180
∘
=>125
∘
+∠BOC=180
∘
−from(1)
∴∠BOC=55
∘
Please mark me as brainliest
Similar questions