Math, asked by ranafathimak2006, 1 year ago

2)
In the multiplication table made earlier, take a square of nine num-
bers, instead of four, and mark the numbers at the four corners:
9 12 15
(12) 16 (20
i) What is the difference of diagonal sums?
ii) Explain using algebra, why this difference is the same for all such
squares.
iii) What if we take a square of sixteen numbers?​

Answers

Answered by amitnrw
8

Answer:

the difference of diagonal sums = 0

Step-by-step explanation:

2  3  4

7  8  9

12 13 14

2 + 14  - 4 + 12

= 16 - 16

= 0

11     12    13

16    17     18

21    22    23

11 + 23 - 21 + 13

= 34 - 34

= 0

the difference of diagonal sums = 0

a       a+ 1       a + 2

a+5   a + 6     a + 7

a+ 10  a + 11   a + 12

a + a + 12  - (a + 10 + a + 2)

= 2a + 12 - (2a + 12)

= 0

difference of diagonal sums = 0

if we take a square of sixteen numbers , still  the difference of diagonal sums = 0

a          a+1       a+2      a+3

a+5      a+6      a+7      a+8

a+10     a+11     a+12    a+13

a+15     a+16     a+17    a+18

a + a + 18  - (a + 15 + a + 3)

= 2a + 18 - (2a + 18)

= 0

the difference of diagonal sums = 0

Question Talks about multiplication table

then Difference of sum of Diagonals

would  be  d²  for (d + 1)  squares

2 * 2  - Square (4 numbers)

Difference of sum of Diagonals  = 1² = 1

3 * 3  - Square ( 9 numbers)

Difference of sum of Diagonals  = 2² = 4

4 * 4  - Square ( 16 numbers)

Difference of sum of Diagonals  = 3² = 9

Proof :

an          a(n+1)                         a(n+d)

(a+1)n     (a+1)(n+1)                  (a+1)(n+d)

(a+d)n   (a+d)(n+1)                 (a+d)(n+d)

an + (a+d)(n+d) - ((a+d)n  +   a(n+d))

= d²

Attachments:
Similar questions