Math, asked by samprada1212, 10 months ago

2] It is given that the difference between the zeros of 4x^2 -8kx+9 is 4 and k>0. Then k=?

Answers

Answered by BrainlyPopularman
13

GIVEN :

Difference between the zero's of 4x² - 8kx + 9 = 0 is 4.

k > 0

TO FIND :

Value of k = ?

SOLUTION :

• If a quadratic equation ax² + bx + c = 0 have two roots , then Difference of roots –

  \\ \bigstar \:  \:  { \red{ \boxed{ \bold{ Difference \:  \:  of   \:  \:  \: roots \:  =  \dfrac{  \pm\sqrt{D} }{a}  =  \dfrac{ \pm \sqrt{ {b}^{2}  - 4ac} }{a}  \:  \: }}}} \\

• Here –

  \\   \:  \:  \:  \: {  \huge{.}}{ \blue{ \bold{  \:  \:  \: a = 4}}} \\

  \\   \:  \:  \:  \: {  \huge{.}}{ \blue{ \bold{  \:  \:  \:b =  - 8k}}} \\

  \\   \:  \:  \:  \: {  \huge{.}}{ \blue{ \bold{  \:  \:  \:c =  9}}} \\

• According to the question –

  \\  \implies  { \bold{ Difference \:  \:  of   \:  \:  \: roots \:   =  4 }} \\

  \\  \implies  { \bold{ \dfrac{ \pm \sqrt{ {b}^{2}  - 4ac} }{a}  \:  \:    =  4 }} \\

  \\  \implies  { \bold{ \dfrac{ \pm \sqrt{ {( - 8k)}^{2}  - 4(4)(9)} }{4}  \:  \:    =  4 }} \\

  \\  \implies  { \bold{ \pm \sqrt{ {( - 8k)}^{2}  - 4(4)(9) }  \:  \:    =  16 }} \\

• Square on both side –

  \\  \implies  { \bold{  {( - 8k)}^{2}  - 4(4)(9)   \:  \:    =   {(16)}^{2}  }} \\

  \\  \implies  { \bold{  {( - 8k)}^{2}  -144   \:  \:    =   256  }} \\

  \\  \implies  { \bold{ 64 {k}^{2}     \:  \:    =   256 + 144  }} \\

  \\  \implies  { \bold{ 64 {k}^{2}     \:  \:    = 400 }} \\

  \\  \implies  { \bold{ {k}^{2}     \:  \:    =   \dfrac{400}{64} }} \\

  \\  \implies  { \bold{ {k}     \:  \:    =     \pm\sqrt{\dfrac{400}{64} }} }\\

  \\  \implies  { \bold{ {k}     \:  \:    =     \pm{\dfrac{20}{8} }} }\\

  \\  \implies  { \bold{ {k}     \:  \:    =     \pm{\dfrac{5}{2} }} }\\

• But k > 0 , So that –

  \\  \implies  \large { \green{ \boxed{ \bold{ {k}     \:  \:    =     {\dfrac{5}{2} }} }}}\\

Similar questions