Math, asked by swetapatil7881, 2 months ago

2) it l and m are zeroes of the polynomial p(x)=2x2-5x+7.find a polynomial whose zeroes are 2l+3and 2m+3.

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given polynomial is

\rm :\longmapsto\:p(x) =  {2x}^{2} - 5x + 7

and

\rm :\longmapsto\:l \: and \: m \: are \: zeroes \: of \: p(x).

We know, that

In a quadratic polynomial,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \:l + m =  - \dfrac{( - 5)}{2} =  \dfrac{5}{2}

and

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \:lm = \dfrac{7}{2}

Now,

We have to find the quadratic polynomial whose zeroes are 2l + 3 and 2m + 3.

So,

Sum of zeroes, is

\rm \:  =  \:  \:2l + 3 + 2m + 3

\rm \:  =  \:  \:2(l +m)  + 6

\rm \:  =  \:  \:2 \times \dfrac{5}{2}  + 6

\rm \:  =  \:  \:5 + 6

\rm \:  =  \:  \:11

Now,

Product of zeroes, is

\rm \:  =  \:  \:(2l + 3)(2m + 3)

\rm \:  =  \:  \:4lm + 6l + 6m + 9

\rm \:  =  \:  \:4lm + 6(l + m) + 9

\rm \:  =  \:  \:4 \times \dfrac{7}{2} + 6 \times \dfrac{5}{2}  + 9

\rm \:  =  \:  \:14 + 15 + 9

\rm \:  =  \:  \:38

So, the required polynomial be f(x) having zeroes (2l + 3) and (2m + 3), is given by

 \boxed{\rm\:f(x) = k\bigg( {x}^{2} - (Sum \: of \: zeroes)x + Product \: of \: zeroes \bigg) \: where \: k \:  \ne \: 0}

So On substituting all values evaluated above, we get

\rm :\longmapsto\:f(x) = k\bigg( {x}^{2} - 11x + 38 \bigg) \: where \: k \:  \ne \: 0

Additional Information :-

\rm :\longmapsto\: \alpha  \: and \:  \beta  \: are \: zeroes \: of \:  {ax}^{2} + bx + c \: then

 \red{\boxed{ \bf{ \:  \alpha   + \beta  =  -  \frac{b}{a}}}}

and

 \red{\boxed{ \bf{ \:  \alpha\beta  = \frac{c}{a}}}}

\rm :\longmapsto\: \alpha, \:  \beta \: and  \gamma \: are \: zeroes \: of \:  {ax}^{3} + b {x}^{2} + cx + d \: then

 \red{\boxed{ \bf{ \:  \alpha   + \beta +  \gamma   =  -  \frac{b}{a}}}}

 \red{\boxed{ \bf{ \:  \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  = \dfrac{c}{a}}}}

 \red{\boxed{ \bf{ \:  \alpha\beta \gamma   = -  \:  \frac{d}{a}}}}

Answered by thiruvaransuryakumar
1

Answer:

Step-by-step explanation:

Given polynomial is

and

We know, that

In a quadratic polynomial,

and

Now,

We have to find the quadratic polynomial whose zeroes are 2l + 3 and 2m + 3.

So,

Sum of zeroes, is

Now,

Product of zeroes, is

So, the required polynomial be f(x) having zeroes (2l + 3) and (2m + 3), is given by

So On substituting all values evaluated above, we get

Additional Information :-

and

Similar questions