2. Label the coordinates as shown below.
c la b)
BO, b)
A
D
(a o
(c. O
a. Find the distance between A and C. Given: A (0, 0) and
C (a, b)
AC =
Va-02 + (6-0)
WARAN
Va? +02
AC =
C С
b. Find the distance between B and D.
c. Given: b (0, b)
and D (a, 0)
LYON
BD =
Va-0)' + (0-b)
BD - Va? +
Since AC = BD, then AC = BD by substitution.
Therefore, AC = BD. The diagonals of a rectangle are congruent.
Answers
Answered by
2
Answer:
Points “(a\quad +\quad b,\quad b\quad +\quad c)”and
(“a\quad -\quad b”,“c\quad -\quad b”)
To find:
“Distance between” the two pair.
Answer:
A (a+b, b+c) and B (a-b, c-d)
As per the given question
AB=\sqrt { ({ x }_{ 2 }-{ x }_{ 1 })^{ 2 }+({ y }_{ 2 }-{ y }_{ 1 })^{ 2 } }AB=
(x
2
−x
1
)
2
+(y
2
−y
1
)
2
We know that,
{ x }_{ 1 }\quad =\quad a\quad +\quad bx
1
=a+b
{ x }_{ 2 }\quad =\quad a\quad -\quad bx
2
=a−b
{ y }_{ 1 }\quad =\quad b\quad +\quad cy
1
=b+c
{ y }_{ 2 }\quad =\quad c\quad -\quad by
2
=c−b
\therefore AB=\sqrt{(a-b-a-b)^{2}+(c-b-b-c)^{2}}∴AB=
(a−b−a−b)
2
+(c−b−b−c)
2
=\sqrt{(-2 b)^{2}+(-2 b)^{2}}=
(−2b)
2
+(−2b)
2
=\sqrt{4 b^{2}+4 b^{2}}=
4b
2
+4b
2
=\sqrt{8 b^{2}}=
8b
2
AB=2 b \sqrt{2}AB=2b
2
Similar questions