Math, asked by leenamahajani2703, 2 months ago

(2) Length of a diagonal of a square is 15
 \sqrt{2}
3 cm. Find its perimeter.
(A) 15 cm
(B) 30 cm
(C) 45 cm
(D) 60 cm​

Answers

Answered by IveGONEmad
0

Answer:

I think so its 30

Step-by-step explanation:

don't know but I am not sure pls get answers from others too

Answered by mathdude500
1

Correct Statement

 \sf \: Length \:  of \:  a  \: diagonal \:  of \:  a  \: square \:  is  \:15 \sqrt{2}  \: cm.

 \sf \: Find  \: its  \: perimeter. \\ </p><p> \sf \: (A) 15 cm \\ </p><p> \sf \: (B) 30 cm \\ </p><p> \sf \: (C) 45 cm \\ </p><p> \sf \: (D) 60 cm

\large\underline{\sf{Solution-}}

Let ABCD be a square whose side AB = 'x' cm.

It is given that

 \rm :\longmapsto\:Diagonal_{(square)} =   \: AC \: = 15 \sqrt{2}  \: cm

In ∆ ABC,

Using, Pythagoras Theorem, we have

\rm :\longmapsto\: {AC}^{2}  =  {AB}^{2}  +  {BC}^{2}

\rm :\longmapsto\: {(15 \sqrt{2}) }^{2}  =  {x}^{2}  +  {x}^{2}

\rm :\longmapsto\:225 \times 2 = 2 {x}^{2}

\rm :\longmapsto\: {x}^{2}  = 225

\rm :\implies\:x = 15 \: cm

We Know,

Perimeter of square is evaluated as

\rm :\longmapsto\:Perimeter_{(square)} = 4  \times side

\rm :\longmapsto\:Perimeter_{(square)} = 4  \times \: x

\rm :\longmapsto\:Perimeter_{(square)} = 4  \times \: 15

\rm :\longmapsto\:Perimeter_{(square)} = 60 \: cm

 \boxed{ \bf \: Hence,  \: Option  \: (d) \:  is  \: correct}

Additional Information :-

 \boxed{ \sf \: Perimeter_{(rectangle)} = 2(l + b)}

 \boxed{ \sf \: Area_{(rectangle)} = l \times b}

 \boxed{ \sf \: Area_{(square)} =  {(side)}^{2}}

 \boxed{ \sf \: Area_{(square)} = \dfrac{1}{2}  \times  {(Diagonal_{(square)})}^{2}}

 \boxed{ \sf \: Area_{(right \triangle)} = \dfrac{1}{2} \times b \times h}

 \boxed{ \sf \: Area_{(equilateral \triangle)} = \dfrac{ \sqrt{3} }{4} {(side)}^{2}}

Attachments:
Similar questions