2. Let p(x) be a cubic polynomial such that coefficient
of x^3 is 1, p(1) = 1, p(2) = 2 and p(3) = 3, then the
value of p(4) is
(1) 4
(3) 10
(4) 7
(2) 6
pls send solved
i will mark brainliest
Answers
Answer:
(3) - 10
Step-by-step explanation:
Let the cubic polynomial be p(x) = ax³ + bx² + cx + d.
Given that coefficient of x³ is 1.
(i)
When x = 1:
p(1) = 1 * a + b + c + d
⇒ 1 = 1 + b + c + d
⇒ b + c + d = 0
(ii)
When x = 2:
p(2) = 1(2)³ + b(2)² + c(2) + d
⇒ 2 = 8 + 4b + 2c + d
⇒ 4b + 2c + d = -6
(iii)
When x = 3:
p(3) = a(3)³ + b(3)² + c(3) + d
⇒ 3 = 27 + 9b + 3c + d
⇒ 9b + 3c + d = -24
On solving (i) & (iii), we get
b + c + d = 0
9b + 3c + d = -24
--------------------------
-8b - 2c = 24
8b + 2c = -24
4b + c = -12 ----------------------------- (iv)
On solving (ii) & (iii), we get
4b + 2c + d = -6
9b + 3c + d = -24
---------------------------
-5b - c = 18
5b + c = -18 -------------------------- (v)
On solving (iv) & (v), we get
4b + c = -12
5b + c = -18
--------------------
-b = 6
b = -6
Substitute b = -6 in (iv), we get
4b + c = -12
⇒ 4(-6) + c= -12
⇒ -24 + c = -12
⇒ c = 12
Substitute in (i), we get
⇒ b + c + d = 0
⇒ 12 - 6 + d = 0
⇒ d = -6
Now,
p(4) = 4³ + (-6)(4)² + 12(4) - 6
= 64 - 96 + 48 - 6
= 10
Therefore, the value of p(4) is 10.
Hope it helps!
Hope it helps you !......