2 log 18 + 3 log 24 - 6 log 6 =
Answers
Answer:
1.98227123304
Step-by-step explanation:
Answer:
The value of the expression 2log18 + 3log24 - 6log6 is
Step-by-step explanation:
Recall the rules of logarithm,
(i) log + log = log()
(ii) log - log = log()
(iii) log = log
Consider the given expression as follows:
2log18 + 3log24 - 6log6
Rewrite as follows:
2log + 3log - 6log
Using rule of logarithm (i), we have
⇒ 2(log2 + log) + 3(log + log3) - 6(log2 + 6log3)
⇒ 2log2 + 2log + 3log + 3log3 - 6log2 - 6log3
Simplify as follows:
⇒ (2log2 - 6log2) + (3log3 - 6log3) + 2log + 3log
⇒ - 4log2 - 3log3 + 2log9 + 3log8
Now, using rule of logarithm (iii), we get
⇒ - log - log + log + log
Rearrange the expression as follows:
⇒ (log - log) + (log - log)
Using rule of logarithm (i), we get
⇒ log + log
⇒ log3 + log32
Since log3 = 0.477 and log 32 = 1.505
Substituting the values, we get
⇒ 0.477 + 1.505
⇒ 1.982
Therefore, the value is .