Math, asked by shaiktaj61, 29 days ago

2 log 5 + 2log 16 - log 3 as log N. slove this ​

Answers

Answered by pulakmath007
20

SOLUTION

TO EXPRESS

2 log 5 + 2log 16 - log 3 as log N

FORMULA TO BE IMPLEMENTED

1. log a + log b = log ab

  \displaystyle\sf{2. \:  \log a -  \log b =  \log  \frac{a}{b}  }

 \sf{ \:  3. \:  \:  \log  {a}^{n}  = n \log a}

EVALUATION

  \displaystyle\sf{2\log 5  + 2\log 16 -  \log 3 }

  \displaystyle\sf{ = \log  {5}^{2}   + \log  {16}^{2}  -  \log 3 }

  \displaystyle\sf{ = \log  25   + \log  256  -  \log 3 }

  \displaystyle\sf{ = \log  6400  -  \log 3 }

  \displaystyle\sf{ = \log   \frac{6400}{3}}

Which is of the form log N

Where

  \displaystyle\sf{N =  \frac{6400}{3}}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Answered by rohitkumargupta
6

HELLO DEAR,

GIVEN:- 2 ㏒ 5 + 2㏒ 16 - ㏒ 3 as ㏒ N.

SOLUTION:- Law of Logarithm with base a.

i) ㏒ (mn) = (㏒ m ) + (㏒ n )

ii) ㏒ (m/n) = (㏒ m ) - (㏒ n )

iii) ㏒ (m^K ) = k . (㏒ m )

iv) ㏒ 1 = 0

v) ㏒ a = 1

So, 2 ㏒ 5 + 2㏒ 16 - ㏒ 3

㏒ 5² + ㏒ 16² - ㏒ 3

⇒ ㏒ 25 + ㏒ 256 - ㏒ 3

⇒ ㏒ (25×256) - ㏒ 3

⇒ ㏒ 6400 - ㏒ 3

⇒ ㏒ (6400/3). is given as ㏒ N

Therefore, N = 6400/3.

THANKS.

Similar questions