Math, asked by mounikakoyaneni, 5 months ago

2 log (cos teta)+log(1+tan²teta)=​

Answers

Answered by jejibi
9

Answer:

follow me guys

give thanks ❤️❤️

Take thanks ❤️❤️

Answered by Asterinn
2

 \tt \longrightarrow  2 \:  log( cos  \theta)  + log(1 +   {tan}^{2}   \theta)  \\  \\  \sf we \: know \: that :  \rightarrow  \boxed{ \tt \large1 +   {tan}^{2}  \theta=  {sec}^{2} \theta } \\  \\   \tt \longrightarrow  2 \:  log( cos  \theta)  + log(  {sec}^{2}   \theta)\\  \\   \tt \longrightarrow  2 \:  log( cos  \theta)  + log(   \frac{1}{{cos}^{2} \theta}   )\\  \\   \tt \longrightarrow  2 \:  log( cos  \theta)  + log{(cos \: \theta)}^{ - 2}    \\  \\   \tt \longrightarrow  2 \:  log( cos  \theta)   - 2 \:  log{(cos \: \theta)} \\  \\   \tt \longrightarrow  0

Answer : 0

Trigonometric Identities :

\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Similar questions