Math, asked by hchinalchavda, 1 month ago

(-2)^m+1 (-2)^4 = (-2)^6

Answers

Answered by saanvi3042
1

Answer:

1

Step-by-step explanation:

m+1 (4) = 6

m+1 = 6-4 (since the base is same... the powers subtract during their division)

m+1 = 2

m = 2-1

m= 1

HOPE IT HELPS :-)

Answered by MrImpeccable
20

ANSWER:

Given:

  • (-2)^(m+1) × (-2)^4 = (-2)^6

To find:

  • Value of m

Solution:

We are given that,

\implies (-2)^{m+1}\times(-2)^4=(-2)^6

We know that,

\hookrightarrow a^x\times a^y=a^{x+y}

So,

\implies (-2)^{m+1}\times(-2)^4=(-2)^6

\implies (-2)^{m+1+4}=(-2)^6

\implies (-2)^{m+5}=(-2)^6

As, the bases are same we wil compare the powers.

So,

\implies (-2)^{m+5}=(-2)^6

\implies m+5=6

\implies m=6-5

Hence,

\implies\bf m=1

Therefore, value of m is 1.

More Formulae:

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identities}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\bf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\bf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\bf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) - B^{3}\\\\8)\bf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\9)\bf\: A^{3} - B^{3} = (A-B)(A^{2} + AB + B^{2})\\\\ \end{minipage}}

Similar questions