Math, asked by dayimiba, 7 months ago

(-2)m+¹+(-2)⁴=(-2)6=m=​

Answers

Answered by pulakmath007
21

SOLUTION

TO DETERMINE

The value of m when

 \sf{ {( - 2)}^{m + 1}  \times  {( - 2)}^{4}  =  {( - 2)}^{6} }

FORMULA TO BE IMPLEMENTED

We are aware of the formula on indices that

 \sf{  {a}^{m}  \times  {a}^{n}   =  {a}^{m + n} }

EVALUATION

 \sf{ {( - 2)}^{m + 1}  \times  {( - 2)}^{4}  =  {( - 2)}^{6} }

 \sf{ \implies {( - 2)}^{m + 1 + 4}  =  {( - 2)}^{6} }

 \sf{ \implies {( - 2)}^{m + 5}  =  {( - 2)}^{6} }

 \sf{ \implies m + 5 = 6}

 \sf{ \implies m = 6 - 5}

 \sf{ \implies m = 1}

FINAL ANSWER

The required value m = 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. ( 5x³-3x²) ÷ x² find quotient and remainder

https://brainly.in/question/33498447

2. solve: 49³-30³+(....)³= 3 × 49 × 30 × 19

https://brainly.in/question/17577612

Answered by KingSrikar
8

Given : \sf{(-2)^{m+1} \times(-2)^{4}=(-2)^{6}}

To Find : Value of m in the Given Expression

------------------------------

\sf{\left(-2\right)^{m+1}\left(-2\right)^4=\left(-2\right)^6}

  • Apply Exponent Rule : \sf{a^b\times a^c=a^{b+c}}

\to\sf{\left(-2\right)^{m+1+4}=\left(-2\right)^6}

\to\sf{\left(-2\right)^{m+5}=\left(-2\right)^6}

  • If \sf{a^{f\left(x\right)}=a^{g\left(x\right)}} , then \sf{f\left(x\right)=g\left(x\right)}

\to\sf{m+5=6}

  • Subtract 5 from both Sides

\to\sf{m+5-5=6-5}

\to\sf{m=1}

Similar questions