Math, asked by shahbhavita12, 4 months ago

2^m+n-4 x 3^n-m+6 = 6^2m+3n-5

Then find the value of m & n.

A. 5 and -1
B. 5 and -2
C. 4 and -2
D. 6 and -3
E. 6 and -2

Answers

Answered by HarshithScamander
3

Answer:

Option B

Step-by-step explanation:

Given,

       2^{m+n-4} x 3^{n-m+6} = 6^{2m+3n-5}

⇒    2^{m+n-4} x 3^{n-m+6} = (2 x 3))^{2m+3n-5}

⇒    2^{m+n-4} x 3^{n-m+6} = 2^{2m+3n-5} x 3^{2m-3n-5}

By comparing both sides of equation,

2^{m+n-4}=2^{2m+3n-5}

⇒ m + n - 4 = 2m + 3n - 5

⇒ 2m + 3n - m - n = -4 + 5

⇒ m + 2n = 1

⇒ m = 1 - 2n ----------------------> ①

And,

3^{n-m+6}=3^{2m+3n-5}

⇒ n - m + 6 = 2m + 3n - 5

⇒ 2m + 3n - n + m = 6 + 5

⇒ 3m + 2n = 11

⇒ 3(1-2n) + 2n = 11

⇒ 3 - 6n + 2n = 11

⇒ -4n = 11 - 3

⇒ -n = 8/4

⇒ -n = 2

⇒ n = -2

m = 1 - 2n = 1 - 2(-2) = 1 + 4 = 5

∴ m = 5 and n = -2 (Option B)

Hope it helps!!! Please mark Brainliest!!!

Similar questions