2. Mark each of the following sentences as true or false.
(a) If ax +b >c then ax >c-b.
c-b
(b) If ax +b >c then x < where a is a negative number.
(c) If a > b then a-c>b-c.
(d) If a <b then ac <bc,c +0.
b
(e) If a > b then - >-, C 0.
(f) If a-c<b-d then a + d <b+c.
C
C
Answers
If ax +b > c then ax >c-b is a false statement
If ax +b >c then x < a where a is a negative number true statement
If a > b then a-c > b-c is a true statement
If a < b then ac < bc is a true statement
If a > b then - > - is a false statement
If a-c < b-d then a + d < b+c is a false statement
Given:
(a) If ax +b > c then ax >c-b.
(b) If ax +b > c then x < where a is a negative number.
(c) If a > b then a-c > b - c
(d) If a < b then ac < bc, c + 0
(e) If a > b then - > -, C 0
(f) If a - c < b - d then a + d < b+c
To find:
Mark each of the following sentences as true or false.
Solution:
(a) If ax +b > c then ax >c-b.
The above statement is false
Since the inequality ax > c - b is not true if ax + b > c.
For example, if a = 2, b = 3, and c = 3,
then ax + b > c => 2x + 3 > 3 which is false
∴ If ax +b > c then ax >c-b is a false statement
(b) If ax +b >c then x < a where a is a negative number.
The above statement is true
if ax + b > c and a is a negative number,
then x is less than c - b
For example, if a = -2, b = 3, and c = 5,
then ax + b > c => -2x + 3 > 5 is true
∴ If ax +b >c then x < a where a is a negative number true statement
(c) If a > b then a-c > b-c.
The above statement is true
For example, if a = 4, b = 3, and c = 2, then
=> a > b = 4 > 3 is true
=> a-c > b-c = 4 - 2 > 3 - 2 = 2 > 1 which is true
∴ If a > b then a-c > b-c is a true statement
(d) If a < b then ac < bc, c + 0
The above statement is true
For example, if a = 2, b = 1, and c = 3, then
=> a > b = 2 > 1 is true
=> ac < bc = 6 < 3 which is true
∴ If a < b then ac < bc is a true statement
(e) If a > b then - > -, C
The above statement is false because ' - > - ' is not a valid statement.
∴ If a > b then - > - is a false statement
(f) If a-c < b-d then a + d < b+c.
The above statement is false
The inequality a + d < b + c is not certainly true if a-c < b-d.
For example, take a = 1, b = 2, c = 3, and d = 4, then
Then a - c < b - d => 1 - 3 < 2 - 4 is false
but a + d < b + c => 2 + 5 < 3 + 4 is is ture
∴ If a-c < b-d then a + d < b+c is a false statement
Therefore,
If ax +b > c then ax >c-b is a false statement
If ax +b >c then x < a where a is a negative number true statement
If a > b then a-c > b-c is a true statement
If a < b then ac < bc is a true statement
If a > b then - > - is a false statement
If a-c < b-d then a + d < b+c is a false statement
#SPJ1