2 MARKS:
If cos (A-B) = sin (A+B) = 1, then find the value of A and B
Answers
Step-by-step explanation:
2marks or marks for 10th class
Given :-
- cos(A - B ) = 1
- sin ( A + B ) = 1
To find :-
- Value of A,B
Solution:-
Take two conditions
cos ( A - B ) = 1
We know that cos 0 = 1
So,
cos ( A - B ) = cos0
Removing cos on both sides
A - B = 0 -------- eq 1
sin ( A + B ) = 1
We know that sin90 = 1
So,
sin ( A + B ) = sin 90°
Removing sin on both sides
A + B = 90° ------ eq 2
Adding two equations
A - B + A + B = 0+ 90
A + A -B + B = 90°
2A = 90°
A = 90°/2
A = 45°
Substitute in eq 2
A + B = 90°
45 + B = 90°
B = 90°-45°
B = 45°
So, the values of A,B are 45°,45°
_________________
Know more:-
cos(A + B) = cosAcosB - sinAsinB
cos ( A - B) = cosA cosB + sinAsinB
tan ( A +B ) = tanA + tanB / 1 - tanAtanB
tan( A-B) = tanA - tanB/1 + tanAtanB
cot ( A + B ) = cotBcotA -1 / cotB + cotA
cot ( A - B ) = cotB cotA + 1/ cotB - cotA
tan(45+ A) = 1+tanA/1 - tanA
tan (45 - A ) = 1-tanA/1 + tanA
Trignometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
csc²θ - cot²θ = 1
Trignometric relations
sinθ = 1/cscθ
cosθ = 1 /secθ
tanθ = 1/cotθ
tanθ = sinθ/cosθ
cotθ = cosθ/sinθ
Trignometric ratios
sinθ = opp/hyp
cosθ = adj/hyp
tanθ = opp/adj
cotθ = adj/opp
cscθ = hyp/opp
secθ = hyp/adj