2 men and Sboys can finish
s boys can finish a work in 4 days
while 3men and 6 boys can finish it in 3 days
find the time taken by 4 men and 8 boys to finish
the same work
Answers
Given :-
\sf\dfrac{3}{x+1} - \dfrac{1}{2} = \dfrac{2}{3x-1}
x+1
3
−
2
1
=
3x−1
2
To Find :-
Quardatic equation
Solution :-
\sf\dfrac{3}{x+1}-\dfrac{1}{2} = \dfrac{2}{3x-1}
x+1
3
−
2
1
=
3x−1
2
\sf \dfrac{3}{x+1}-\dfrac{2}{3x-1}=\dfrac{1}{2}
x+1
3
−
3x−1
2
=
2
1
\sf\dfrac{3(3x-1)-2(x+1)}{(x+1)(3x-1)}=\dfrac{1}{2}
(x+1)(3x−1)
3(3x−1)−2(x+1)
=
2
1
\sf\dfrac{(9x-3)-(2x+2)}{(x+1)(3x-2)}=\dfrac{1}{2}
(x+1)(3x−2)
(9x−3)−(2x+2)
=
2
1
\sf\dfrac{7x-5}{3x^{2} +2x-1}=\dfrac{1}{2}
3x
2
+2x−1
7x−5
=
2
1
\sf 2(7x-5)=3x^{2} +2x-12(7x−5)=3x
2
+2x−1
\sf 14x - 10=3x^{2} +2x-114x−10=3x
2
+2x−1
\sf 3x^{2} + 2x-14x+10-9=03x
2
+2x−14x+10−9=0
\sf 3x^{2} -12x+9=03x
2
−12x+9=0
\sf 3x^{2} -9x-3x+9=03x
2
−9x−3x+9=0
\sf 3x(x-3)-3(x-3)=03x(x−3)−3(x−3)=0
\sf (x-1)(x-3)=0(x−1)(x−3)=0
Either
x - 1 = 0
x = 0 - 1
x = -1
or
x - 3 = 0
x = 0 - 3
x = -3
Answer:
2 men and Sboys can finish
s boys can finish a work in 4 days
while 3men and 6 boys can finish it in 3 days
find the time taken by 4 men and 8 boys to finish
the same work
Step-by-step explanation:
2 men and Sboys can finish
s boys can finish a work in 4 days
while 3men and 6 boys can finish it in 3 days
find the time taken by 4 men and 8 boys to finish
the same work