Math, asked by sumitpawar2284, 1 year ago

2 minus root 3 divided by 2 + root 3 equal to a + b root 3 solution for the sum

Answers

Answered by maturisandhyarani225
10

Answer:

a= 7

b= -4

Step-by-step explanation:

(2-√3)/(2+√3) = a+b√3

Rationalizing the above equation with 2-√3

(2-√3)(2-√3)/(2+√3)(2-√3)= a+b√3

(4-4√3+3)/(4-3) = a+b√3

7-4√3=a+b√3

comparing on both sides

a=7

b=-4.

Answered by pinquancaro
8

The value of a=7 and b=-4.

Step-by-step explanation:

Given : Expression \frac{2-\sqrt{3}}{2+\sqrt3}=a+b\sqrt3

To find : Solve the expression ?

Solution :

\frac{2-\sqrt{3}}{2+\sqrt3}=a+b\sqrt3

Rationalize the denominator,

\frac{2-\sqrt{3}}{2+\sqrt3}\times \frac{2-\sqrt{3}}{2-\sqrt3}=a+b\sqrt3

\frac{(2-\sqrt{3})^2}{2^2-(\sqrt3)^2}=a+b\sqrt3

\frac{4+3-4\sqrt3}{4-3}=a+b\sqrt3

\frac{7-4\sqrt3}{1}=a+b\sqrt3

7-4\sqrt3=a+b\sqrt3

On comparing,

The value of a=7 and b=-4.

#Learn more

One by root 3 + root 2 minus 2 by root 5 minus root 3 minus 3 by root 2 minus root 5 simplified

https://brainly.in/question/3860515

Similar questions