Math, asked by annolivia06, 1 month ago

2. Multiply the additive inverse of -6 2/3 by the multiplicative inverse of 5 1/6. ​

Answers

Answered by GraceS
6

\sf\huge\bold{Answer:}

Given :

 \sf \: mixed \: fractions =   - 6 \frac{2}{3} ,5 \frac{1}{6}  \\

To find :

Multiplication of the additive inverse of  \sf   - 6 \frac{2}{3}  \\ by the multiplicative inverse of  \sf \: 5 \frac{1}{6}  \\ .

Solution :

Converting mixed fraction into improper fraction :

 \tt:⟶ - 6 \frac{2}{3}  =  \frac{3 \times  - 6 + 2}{3}   \\

 =   \tt\frac{ - 18+2}{ \:  \:  \: 3}  \\

 =   \tt\frac{ - 16}{ \:  \:  \: 3}  \\

Additive inverse of  →   \tt\frac{ - 16}{ \:  \:  \: 3}  \\

 =   \tt\frac{ 16}{ \:  \:  \: 3}  \\

Converting mixed fraction into improper fraction :

 \tt:⟶5 \frac{1}{6}  =  \frac{6 \times 5 + 1}{6}  \\

 \tt =  \frac{30 + 1}{6}  \\

 \tt =  \frac{31}{6}\\

Multiplicative inverse of  \tt →  \frac{31}{6}\\

 \tt =  \frac{6}{13}\\

→ Multiplication of the additive inverse of  \sf   - 6 \frac{2}{3}  \\ by the multiplicative inverse of  \sf \: 5 \frac{1}{6}  \\ .

 = \tt additive\: inverse\: of\: - 6 \frac{2}{3}  \\  \tt  ×\: multiplicative\: inverse\: of  \: 5 \frac{1}{6}  \\ .

 \tt =  \frac{16}{3}  \times  \frac{6}{13}  \\

 \tt =  \frac{6}{3}  \times  \frac{16}{13}  \\

\tt{=}\displaystyle{\tt { \cancel{ \frac{6}{3} }} \frac{16}{13} }

 \tt = 2 \times  \frac{16}{13}  \\

 \tt =  \frac{32}{13}  \\

 \tt\red{ →additive\: inverse\: of\: - 6 \frac{2}{3}    ×\: multiplicative\: inverse\: of  \: 5 \frac{1}{6} } \\  \tt\red{ =  \frac{32}{13} } \\

Similar questions