Math, asked by JJstyles, 1 year ago

2^n-1+2^n+1=320 then n=?

Answers

Answered by anustarnoor
129
ANS = 2^n-1+2^n+1=320

2 ^n)(2^-1 +2^+1 )= 320
 2^n ( 1/2 + 2) = 320
2 ^n( 5/2) = 320
2^n = 320*2/5
2^n=64*2
2^n=128
2^n=2^7
thus, n = 7 
Answered by mysticd
62

Answer:

n = 7

Explanation:

Given

2^{n-1}+2^{n+1}=320

\implies \frac{2^{n}}{2^{1}}+2^{n}\times 2^{1} = 320

/* By Exponential laws :

i )  a^{m-n} =\frac{a^{m}}{a^{n}}

ii) a^{m+n} = a^{m} \times a^{n}

*/

Let 2 = a ---(1)

\implies \frac{a}{2}+a \times 2 = 320

\implies \frac{a+4a}{2}=320

\implies \frac{5a}{2}=320

\implies a = 320 \times \frac{2}{5}

After cancellation , we get

\implies a = 128

\implies 2^{n} = 2^{7}

/* From (1) */

\implies n = 7

/* By the Exponential Law :

 If \:a^{m}=a^{n} \: then \: m = n */

Therefore,

n = 7

Similar questions