Math, asked by Gangarao3414, 1 year ago

2 numbers whose product is 132 and diffrrence is 1

Answers

Answered by Leukonov
0
Let X and Y be the Numbers(Where X>Y)

So According to the Question..

XY=132→(1)
And
X-Y=1
→X=1+Y→(2)

Substituting (2) in (1)
→(1+Y)Y=132
→Y+Y²=132
→Y²+Y-132=0

Here,
D=b²-4ac=1-(-132×4)
=1+528
=529.

now
y =  \frac{ - b( +  -) ( \sqrt{d} }{2a}  \\  =   \frac{- 1( +  - )( \sqrt{529} }{2 \times 1} \\  =  \frac{ - 1( +  - )(23)}{2}
So Y=(-1+29)/2=28/2=14

or Y=(-1-29)/2=(-30)/2=(-15)

When Y=14, X=15 { 1+Y [eq(2)] }
When Y=-15, X=-14 { 1+Y [eq(2)] }

So The Required No: are ±(15and14)

Hope it Helps...
Regards,
Leukonov.
Similar questions