2 numbers whose product is 132 and diffrrence is 1
Answers
Answered by
0
Let X and Y be the Numbers(Where X>Y)
So According to the Question..
XY=132→(1)
And
X-Y=1
→X=1+Y→(2)
Substituting (2) in (1)
→(1+Y)Y=132
→Y+Y²=132
→Y²+Y-132=0
Here,
D=b²-4ac=1-(-132×4)
=1+528
=529.
now
So Y=(-1+29)/2=28/2=14
or Y=(-1-29)/2=(-30)/2=(-15)
When Y=14, X=15 { 1+Y [eq(2)] }
When Y=-15, X=-14 { 1+Y [eq(2)] }
So The Required No: are ±(15and14)
Hope it Helps...
Regards,
Leukonov.
So According to the Question..
XY=132→(1)
And
X-Y=1
→X=1+Y→(2)
Substituting (2) in (1)
→(1+Y)Y=132
→Y+Y²=132
→Y²+Y-132=0
Here,
D=b²-4ac=1-(-132×4)
=1+528
=529.
now
So Y=(-1+29)/2=28/2=14
or Y=(-1-29)/2=(-30)/2=(-15)
When Y=14, X=15 { 1+Y [eq(2)] }
When Y=-15, X=-14 { 1+Y [eq(2)] }
So The Required No: are ±(15and14)
Hope it Helps...
Regards,
Leukonov.
Similar questions