2. O is any point inside the triangle A ABC. Let's prove that (i) AB+AC > OB+OC (ii) AB+BC+AC > OA+OB+OC
Answers
Answered by
0
Answer:
This is the correct once....
Step-by-step explanation:
InΔPBO
BP+PO>OB
AddingOCanbothsides
weget,
BP+PO+OC>OB+OC
BP+PC>OB+OC
BP+PC>OB+OC→(i)[PO+OC=PC]
InΔAPC
AP+AC>PC
AddingBPonbothsides,weget
AP+AC+BP>PC+BP→(ii)[AP+PB=AB]
from(i)&(ii)
AB+AC>BP+PC>OB+OC
AB+AC>OB+OC→(iii)
similarly
BC+AC>OB+OA→(iv)
AB+BC>OA+OC→(v)
addingequation(3)(4)(5)weget
2(AB+BC+CA)>2(OA+OB+OC)
AB+BC+CA>OA+OB+OC
Similar questions