Physics, asked by DiyaPasricha, 2 months ago

2 ohm ,3 ohm,5ohm,4ohm battery of 5 volt are in parallel find resistance and current​

Answers

Answered by Yuseong
2

Given Information :

• 2Ω, 3Ω , 5Ω and 4Ω resistors and a battery of 5V are connected in parallel combination.

To calculate :

• Effective resistance (R)

• Current (I)

Calculation :

 \underline{\small \sf {\maltese \; \; \; Finding \: effective \: resistance \: (R)  : \; \; \;  }}

When the resistors are connected in parallel combination, effective resistance is given by the formula given below :-

 \boxed { \sf {\dfrac{1}{R} = \dfrac{1}{R_1} +   \dfrac{1}{R_2}+ \dfrac{1}{R_3} + \dots \dfrac{1}{R_n}}}

Here,

  •  \sf {R_1 } = 2Ω
  •  \sf {R_2 } = 3Ω
  •  \sf {R_3 } = 5Ω
  •  \sf {R_4 } = 4Ω

Substituting values,

 \longmapsto \sf{ \dfrac{1}{R} = \dfrac{1}{R_1} +   \dfrac{1}{R_2}+ \dfrac{1}{R_3} +  \dfrac{1}{R_4 } }

 \longmapsto \sf{ \dfrac{1}{R} = \dfrac{1}{2} +   \dfrac{1}{3}+ \dfrac{1}{5} +  \dfrac{1}{4 } }

 \longmapsto \sf{ \dfrac{1}{R} = \dfrac{30 + 20 + 12 + 15}{60} }

 \longmapsto \sf{ \dfrac{1}{R} = \dfrac{77}{60} }

 \longmapsto \boxed { \pmb {\rm \red{ R= \dfrac{60}{77} \: \Omega }} }

Therefore, resistance is 60/77 Ω.

 \underline{\small \sf {\maltese \; \; \; Finding \: current \: (I)  : \; \; \;  }}

We have,

  • Potential difference (V) = 5 V
  • Resistance (R) =  \sf \dfrac{60}{77} Ω

By applying Ohm's law to the whole circuit,

 \boxed{\sf {V = I R}} \\

 \longmapsto \sf { 5= I \times \dfrac{60}{77}}

 \longmapsto \sf { 5 \div \dfrac{60}{77}= I }

 \longmapsto \sf { 5 \times \dfrac{77}{60}= I }

 \longmapsto \boxed { \pmb {\rm \red{\dfrac{77}{12}\:  A= I  }} }

Therefore, current is 77/12 Ampere.

Similar questions