Math, asked by rajaluxmy1967, 10 months ago

2.Plzzzz sove this question as soon as possible
see the attachement

Attachments:

Answers

Answered by rishu6845
4

\bold{Given}\longrightarrow \\ curve \: c \: is \: given \: by \: parametric \: eqution \\ is \\ x = 2 {t}^{2}  \:  \:  \: y =  {3}^{t}  \\ tangent \: drawn \: to \: C \: at \: point \: P \: (8 \: 9) \\ meets \: y \: axis \: at \: Q

\bold{concept \: used}\longrightarrow \\ 1) \dfrac{d}{dx} ( {a}^{x} ) =  {a}^{x}  log_{e}(a)  \\ 2) \dfrac{d}{dx} ( \sqrt{x} ) =  \dfrac{1}{2 \sqrt{x} }  \\ 3)eqution \: of \: tangent \: at \: ( \alpha , \:  \beta ) \\ (y -  \beta ) =  \dfrac{dy}{dx} at( \alpha , \:  \beta ) \:  \: (x -  \alpha )

\bold{To \: prove}\longrightarrow \: y \: coordinate \: of \: q \: is \:  \\ 9 - 9 log_{e}(3)

Solution---> x= 2t² , y = 3

now \\ x = 2 {t}^{2}  \\  =  >  {t}^{2} =  \dfrac{x}{2}   \\  =  > t =  \sqrt{ \dfrac{x}{2} }  \\ now \\ y =  {3}^{t}  \\  =  > y =  {3}^{ \sqrt{ \frac{x}{2} } }  \\  differentiating \: with \: respect \: to \: x \\  =  >  \dfrac{dy}{dx}  =  \dfrac{d}{dx} ( {3}^{ \sqrt{ \frac{x}{2} } } ) \\  =  >  \dfrac{dy}{dx}  =  {3}^{ \sqrt{ \frac{x}{2} } }  log_{e}(3)   \dfrac{d}{dx} ( \sqrt{ \dfrac{x}{2} \:  } \:  ) \\  =  >  \dfrac{dy}{dx}  =  {3}^{ \sqrt{ \frac{x}{2} } }  log_{e}(3)  \dfrac{1}{2 \sqrt{ \frac{x}{2} } }  \dfrac{d}{dx} ( \dfrac{x}{2}  \\  =  >  \dfrac{dy}{dx}  =  {3}^{ \sqrt{ \frac{x}{2} } }  log_{e}(3)  \dfrac{1}{ \sqrt{2} x} ( \dfrac{1}{2} ) \\  \dfrac{dy}{dx}  =  \dfrac{ log_{e}(3) {3}^{ \sqrt{ \frac{x}{2} } }  }{2 \sqrt{2x} }  \\ slope \: of \: tangent \: at \: point \: P \\  =  log_{e}(3) \:  \:   {3}^{ \sqrt{ \frac{8}{2} } }  \dfrac{1}{2 \sqrt{2(8)} }  \\  =  \dfrac{ log_{e}(3) \:  {3}^{ \sqrt{4} }  }{2 \sqrt{16} }  \\  =  \dfrac{ {3}^{2} log_{e}(3)  }{2 \times 4}  \\    = \dfrac{9  log_{e}(3) }{8}

equation \: of \: tangent \: at \: point \: (8 \: , \: 9)

(y - 9) =  \dfrac{9}{8}  log_{e}(3) (x - 8)

now \: tangent \: meet \: y \: axis \: at \: Q \:  \\ at \: Q \: x = 0 \: so \: putting \: x = 0 \: in \: above \: equation

y - 9 =  \dfrac{9}{8}  log_{e}(3) (0 - 8)

 =  > y - 9 =  -  \dfrac{9}{8} \:  \:  8 \:  log_{e}(3)

 =  > y - 9 =  - 9 log_{e}(3)

 =  > y = 9 - 9 log_{e}(3)

so \: y \: coordinate \: of \: Q \\  = 9 - 9log3

Similar questions