Math, asked by payalkumari52095, 2 months ago

2 points
10) If A and B are the zero of the
quadratic polynomial x2- 25 then
the quadratic polynomial whose
zeros are (1+A) and (1 + B) is
O X2 - 24x + 2
O X2 - 2x + 24
O X2 - 2x - 24
O
X2 + 2x + 24​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:A \: and \: B \: are \: zeroes \: of \:  {x}^{2} - 25

We know that

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \:A + B =  - \dfrac{0}{1}  = 0 -  -  - (1)

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \:AB =  \dfrac{ - 25}{1}  =  - 25 -  -  - (2)

Now,

We have to find a polynomial whose zeroes are 1 + A and 1 + B.

Consider,

Sum of the zeroes,

\rm :\longmapsto\:S = 1 + A + 1 + B

\: \rm \: =  \:  \:2 + A + B

\: \rm \: =  \:  \:2 + 0

\: \rm \: =  \:  \:2

\bf\implies \:S = 2 -  -  - (3)

Consider,

Product of zeroes,

\rm :\longmapsto\:P = (1 + A)(1 + B)

\: \rm \: =  \:  \:1 + A + B + AB

\: \rm \: =  \:  \:1 + 0  - 25

\: \rm \: =  \:  \:  - 24

\bf\implies \:P =  - 24 -  -  - (4)

Thus,

The required Quadratic polynomial is

\rm :\longmapsto\:f(x) = k\bigg( {x}^{2} - Sx + P \bigg) \: where \: k \:  \ne \: 0

\rm :\longmapsto\:f(x) = k\bigg( {x}^{2} - 2x  - 24 \bigg) \: where \: k \:  \ne \: 0

Hence,

\red{\bf :\longmapsto\:f(x) =  {x}^{2} - 2x  - 24}

Similar questions