Math, asked by plaxminarayanaly, 7 months ago

2 points
65. The radius and height of a
cylinder are in the ratio 3:2 and
its volume is 19,404 cm" then
its radius is
O a)7cm​

Answers

Answered by MяƖиνιѕιвʟє
31

Given :-

  • The radius and height of a cylinder are in the ratio 3:2 and its volume is 19,404 cm³

To find :-

  • Radius of cylinder

Solution :-

  • Radius and height of cylinder in ratio = 3 : 2

  • Volume of cylinder = 19404cm³

Let the radius be 3x and height be 2x

As we know that

→ Volume of cylinder = πr²h

Where " r " is radius, " h " is height of a cylinder

According to question

→ Volume of cylinder = 19404

→ πr²h = 19404

→ 22/7 × (3x)² × 2x = 19404

→ 22/7 × 9x² × 2x = 19404

→ 22/7 × 18x³ = 19404

→ 22 × 18x³ = 19404 × 7

→ 396x³ = 135828

→ x³ = 135828/396

→ x³ = 343

→ x = ∛343

→ x = 7

Hence,

  • Radius of cylinder= 3x = 21cm

Answered by Anonymous
251

Answer:

Let the radius be 3x and height be 2x.

________________________

\underline{\boldsymbol{According\: to \:the\: Question\:now :}}

: \implies \sf Volume  \: of \:  cylinder = \pi r^2h \\  \\  \\

: \implies \sf 19404 =   \pi  {r}^{2} h \\  \\  \\

: \implies \sf 19404 = \pi (9x^{2})(2x) \\  \\  \\

: \implies \sf 19404 = 18\pi x ^{3} \\  \\  \\

: \implies \sf 19404 = 18 \times  \dfrac{22}{7} \times   x ^{3} \\  \\  \\

: \implies \sf 19404 \times  \dfrac{7}{22} = 18x^{3}    \\  \\  \\

: \implies \sf 882 \times 7= 18 x^{3} \\  \\  \\

:\implies \sf 6174= 18 x^{3} \\  \\  \\

: \implies \sf x^{3}  = \dfrac{6174}{18} \\  \\  \\

: \implies \sf x^{3} = 343 \\  \\  \\

: \implies \underline{\boxed{\sf x = 7 \: cm}}\\  \\  \\

\therefore\:\underline{\textsf{Radius of cylinder is 3x = 3(7)  = \textbf{21 cm}}}. \\

_______________________

\boxed{\bf{\mid{\overline{\underline{\bigstar\: Extra\: Brainly \: Knowledge :}}}}\mid}\\\\

\boxed{\bigstar{\sf \ Cylinder :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cylinder= \pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ cylinder= 2\pi r h\\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ cylinder= 2\pi r (h+r)

\boxed{\bigstar{\sf \ Cone :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cone= \dfrac{1}{3}\pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Cone = \pi r l \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Cone = \pi r (l+r) \\ \\ \\ \sf {\textcircled{\footnotesize4}} Slant \ Height \ of \ cone (l)= \sqrt{r^2+h^2}

\boxed{\bigstar{\sf \ Hemisphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Hemisphere= \dfrac{2}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Hemisphere = 2 \pi r^2 \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Hemisphere = 3 \pi r^2

\boxed{\bigstar{\sf \ Sphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Sphere= \dfrac{4}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Surface\ Area \ of \ Sphere = 4 \pi r^2

Similar questions