Math, asked by npungpung7779, 1 month ago

2 points
Vector A = 4î + 4j -4k and vector B =3î+ j + 4k , then angle between vectors A and B is

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given vectors are

\rm :\longmapsto\:\vec{a}  = 4\hat{i}  + 4\hat{j}  - 4\hat{k}

and

\rm :\longmapsto\:\vec{b}  = 3\hat{i}  + \hat{j}  + 4\hat{k}

Now, we know, angle between two vectors is given by

\boxed{ \tt{ \: cos \theta \:  =  \frac{\vec{a} .\vec{b} }{ |\vec{a} |  \:  |\vec{b} | } \:  \: }}

So, Let evaluate

\rm :\longmapsto\: |\vec{a} |

\rm \:  =   \:  |4\hat{i}  + 4\hat{j}  - 4\hat{k} |

\rm \:  =  \: \sqrt{ {4}^{2} +  {4}^{2}  +  {( - 4)}^{2}  }

\rm \:  =  \: \sqrt{16 + 16 + 16}

\rm \:  =  \: \sqrt{16  \times 3}

\rm \:  =  \:4 \sqrt{3}

\bf\implies \:\boxed{ \tt{ \:  |\vec{a} |  = 4 \sqrt{3}  \:  \: }}

Now, Consider,

\rm :\longmapsto\: |\vec{b} |

\rm \:  =  \: |3\hat{i}  + \hat{j}  + 4\hat{k} |

\rm \:  =  \: \sqrt{ {3}^{2}  +  {1}^{2}  +  {4}^{2} }

\rm \:  =  \: \sqrt{9 + 1 + 16}

\rm \:  =  \: \sqrt{26}

\bf\implies \:\boxed{ \tt{ \:  |\vec{b} |  = \sqrt{26}  \:  \: }}

Now, Consider

\rm :\longmapsto\:\vec{a} .\vec{b}

\rm \:  =  \:(4\hat{i}  + 4\hat{j}  - 4\hat{k} ).(3\hat{i}  + \hat{j}  + 4\hat{k} )

\rm \:  =  \:12 + 4 - 16

\rm \:  =  \:16 - 16

\rm \:  =  \:0

\bf\implies \:\boxed{ \tt{ \: \vec{a} .\vec{b}  = 0 \:  \: }}

Now,

\rm :\longmapsto\:cos\theta \:  =  \: \dfrac{\vec{a} .\vec{b} }{ |\vec{a} |  \:  |\vec{b} | }

\rm :\longmapsto\:cos\theta \:  =  \: \dfrac{0 }{ 4 \sqrt{3}  \times  \sqrt{26} }

\rm :\longmapsto\:cos\theta \:  =  \: 0

\bf\implies \:\theta \:  =  \: \dfrac{\pi}{ 2}

Additional Information :-

\boxed{ \tt{ \: \vec{a} .\vec{b}  = \vec{b} .\vec{a}  \: }}

\boxed{ \tt{ \: \vec{a} .\vec{b}  =  |\vec{a} |  |\vec{b} | cos\theta \:  \:  \: }}

\boxed{ \tt{ \:  |\vec{a}  \times \vec{b} |  =  |\vec{a} | |\vec{b} | sin\theta \:  \: }}

\boxed{ \tt{ \: \vec{a}  \times \vec{b} \:   =  -  \: \vec{b}  \times \vec{a}  \:  \: }}

\boxed{ \tt{ \: \vec{a}  \times \vec{b} = 0  \:  \implies \: \vec{a}  \parallel \: \vec{b}  \:  \: }}

\boxed{ \tt{ \: \vec{a}.\vec{b} = 0  \:  \implies \: \vec{a}  \perp\: \vec{b}  \:  \: }}

Answered by khushi15686
2

Step-by-step explanation:

A.B = 12 + 4 - 16 = 0

So, A is perpendicular to B

So, angle is 90

Similar questions