Physics, asked by mdsaadshaikh6342, 7 months ago

2) Propeller blades in aeroplane are 2m long
(a) When propeller is rotating at 1800 rev/
min, compute the tangential velocity of tip
of the blade.
(b) What is the tangential velocity at a point on
blade midway between tip and axis?
*)
(Ans : 376.8 m/s. 188.4 m/s)

Answers

Answered by Anonymous
10

Questíon :-

⟶Propeller blades in aeroplane are 2m long

(a) When propeller is rotating at 1800rev/min, compute the tangential velocity of tip of the blade.

(b) What is the tangential velocity at a point on blade midway between tip and axis?

Gíven :-

⟶radius,r = 2m

To fínd :-

⟶(a) When propeller is rotating at 1800rev/min, compute the tangential velocity of tip of the blade.

⟶(b) What is the tangential velocity at a point on blade midway between tip and axis?

Formula requíred :-

⟶Angular velocity = Revolution/time

⟶Tangential velocity, V = rω

Solutíon :-

(a) Angular velocity, ω = 1800 rev/min

 ⟹ w =  \frac{180}{60} rev/  s  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  ⟹ w = 30rev/  s  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  ⟹ w = 30 \times 2\pi \: rad / s \\  ⟹ w = 60\pi \: rad / s \:  \:  \:  \:  \:  \:  \:  \:

Tangential velocity, V = rω

 ⟹ v = 2 \times 60\pi \:  \\  ⟹ v = 120\pi  \:  \:  \:  \:  \:  \: \\  ⟹ v = 377m/s \:  \:  \:

(b) Tangential velocity at a point on blade midway between tip and axis:

 ⟹ v =  \frac{r}{2}  \times w  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  ⟹ v = 1 \times 60\pi \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  ⟹ v = 60\pi  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \: \\  ⟹ v = 188.49m/s \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions