2. Prove that the altitude in an equilateral triangle are equal
please give me answer in method
Answers
Answer:
Derivation of Area of an equilateral triangle ;
Let ABC be an equilateral triangle with sides 'a'. Now, draw AD perpendicular to BC.
Here, we have ΔABD = ΔADC.
We will find area of ΔABD using pythagorean theorem, according to which, the square of hypotenuse is equal to the sum of the squares of the other two sides.
Here, we have ;
\begin{gathered}\sf a {}^{2} = h {}^{2} + (\frac{a}{2} ) {}^{2} \\ \\ \sf h {}^{2} = a {}^{2} - \frac{a {}^{2} }{4} \\ \\ \sf h {}^{2} = \frac{3a {}^{2} }{4} \\ \\ \sf h = \frac{ \sqrt{3} }{2} a\end{gathered}a2=h2+(2a)2h2=a2−4a2h2=43a2h=23a
Now, we get the height ;
\begin{gathered}\sf area \: of \: \Delta = \frac{1}{2} \times base \times height \\ \\ \sf area \: of \: \Delta = \frac{1}{2} \times a \times \frac{ \sqrt{3} }{2} a \\ \\ \sf area \: of \: \Delta = \frac{ \sqrt{3} }{4} a {}^{2}\end{gathered}areaofΔ=21×base×heightareaofΔ=21×a×23aareaofΔ=43a2
Hence, area of equilateral triangle is
\sf area \: of \: \Delta = \frac{ \sqrt{3} }{4} a {}^{2}areaofΔ=43a2