Math, asked by kdewanti943, 1 month ago

2
Q2 If sin(A + B) = 1 and cos(A - B) = 1.0° <A+B < 90°,A> B then find A and B.
2 + 3 = 2 and 49
Q3 Solve​

Answers

Answered by King412
88

 \\   \red{\rm\bigstar\large\underline{\underline{Solution :- }}} \\

Sin ( A + B ) = 1 or sin ( A + B ) = sin90°

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  \:  \:  \: [As \:   \sin 90\degree = 1 ] -  -  -  - (1)

Again ,  \sf \: \cos(A + B) = 1

 \\  \:  \:  \:  \:  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \cos0 \degree \\

 \\  \:  \:  \:  \:  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  (A  - B) = 0 -  -  - (2)

Adding (1) and (2) , we get

 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf \:  \:  \:  \: 2A = 90 \degree \: or \:  A \:  = 45 \degree \\

Putting A = 45° in (1) we get

 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf \:  \:  \:  \:  45 \degree + B = 90 \degree \: or \:   B \:  = 45 \degree \\

Hence,

 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \underline{\boxed{\frak \orange{ A = 45 \degree and \: B = 45 \degree}}} \\

Answered by FloralSparks
38

 \\⠀⠀\bigstar \:⠀⠀⠀\underbrace\bold{\large\underline{Concept: - }} \\

If sin(A + B) = 1 and cos(A - B) = 1.0° <A+B < 90°,A> B then find A and B.

2 + 3 = 2 and 49

 \\⠀⠀\bigstar \:⠀⠀⠀\underbrace\bold{\large\underline{Solution: - }} \\

sin (A + B)= 1 or sin (A + B) = sin 90° [As sin 90° = 1]

  • A + B = 90° …(1)

Again, Cos(A-B) = 1 = cos 0° A – B = 0 …(2)

Adding (1) and (2),

we get 2A = 90°

or A = 45°

Putting A = 45° in (1) we get

45° + B = 90°

or B = 45°

  • Hence, A = 45° and B = 45°.
Similar questions