2. Rationalise:
Answers
Answer:
Example 1:
{\displaystyle {\frac {10}{\sqrt {a}}}}{\frac {10}{\sqrt {a}}}
To rationalise this kind of expression, bring in the factor {\displaystyle {\sqrt {a}}}{\sqrt {a}}:
{\displaystyle {\frac {10}{\sqrt {a}}}={\frac {10}{\sqrt {a}}}\cdot {\frac {\sqrt {a}}{\sqrt {a}}}={\frac {10{\sqrt {a}}}{\left({\sqrt {a}}\right)^{2}}}}{\displaystyle {\frac {10}{\sqrt {a}}}={\frac {10}{\sqrt {a}}}\cdot {\frac {\sqrt {a}}{\sqrt {a}}}={\frac {10{\sqrt {a}}}{\left({\sqrt {a}}\right)^{2}}}}
The square root disappears from the denominator, because it is squared:
{\displaystyle {\frac {10{\sqrt {a}}}{\left({\sqrt {a}}\right)^{2}}}={\frac {10{\sqrt {a}}}{a}}}{\displaystyle {\frac {10{\sqrt {a}}}{\left({\sqrt {a}}\right)^{2}}}={\frac {10{\sqrt {a}}}{a}}}
This gives the result, after simplification:
{\displaystyle {\frac {10{\sqrt {a}}}{a}}}{\frac {10{\sqrt {a}}}{a}}
you can solve like this