Math, asked by Anvipawar, 15 days ago

2] Rationalize the denominator
1)
 \frac{3}{2 \sqrt{5 } - 3 \sqrt{2}  }
please help me to solve thi question
form std :- 9th
math part 1 lesson 2 practice set 2.4


Answers

Answered by Anonymous
2

please check the attachment

thank you ❤️

Attachments:
Answered by GraceS
4

\sf\huge\bold{Answer:}

Given :

 \sf = \frac{3}{2 \sqrt{5 } - 3 \sqrt{2} }\\

To find :

Solution after Rationalisation of denominator

Solution :

\sf =  \frac{3}{2 \sqrt{5}  - 3 \sqrt{2} }  \\

Step 1 : to rationalise denominator multiply and divide 25 + 32 to the term.

\sf =  \frac{3}{2 \sqrt{5}  - 3 \sqrt{2} }  \times  \frac{2 \sqrt{5} + 3 \sqrt{2}  }{2 \sqrt{5} + 3 \sqrt{2}  }  \\

Step 2 : Multiply terms in denominator as well as numerator

\sf =  \frac{3(2 \sqrt{5}  + 3 \sqrt{2} }{(2 \sqrt{5}  - 3 \sqrt{2} )(2 \sqrt{5}  - 3 \sqrt{2}  }  \\

Step 3 : Simplifying term by using formula

\fbox{Formula to be used :}

\sf\bold\purple{:⟶  (x + y)(x - y) = {x}^{2}  -  {y}^{2}  }

\sf =  \frac{6 \sqrt{5} +  9\sqrt{2}  }{ {(2 \sqrt{5} )}^{2}  -  {(3 \sqrt{2}) }^{2} }  \\

Step 4 : Simplifying by solving squares

\sf =  \frac{6 \sqrt{5}  + 9 \sqrt{2} }{ {(2)}^{2} (\sqrt{5}) {}^{2}  -  {(3)}^{2}  ( \sqrt{2}) {}^{2}   }  \\

Step 5 : Solving denominator

\sf =  \frac{6 \sqrt{5}  + 9 \sqrt{2} }{4 \times 5 - 9 \times 2}  \\

\sf =  \frac{6 \sqrt{5}   +  9 \sqrt{2} }{20 - 18}  \\

\sf =  \frac{6 \sqrt{5}  +  9 \sqrt{2}  }{2}  \\

or

\sf\huge\purple{ \frac{6 \sqrt{5} }{2}  +  \frac{9 \sqrt{2} }{2}}  \\

Similar questions