Math, asked by binaltamboli, 4 months ago

2. Rationalize thedenominater
of 1/4+2√3​

Answers

Answered by Anonymous
7

Given :

:\normalsize\boxed{\bf\dfrac{1}{4+2\sqrt{3}}}

To Find :

Rationalise the denominator.

Solution :

Analysis :

Here we have to rationalise by using the required formula and the evaluation signs.

Explanation :

 \\ :\implies\normalsize\sf\dfrac{1}{4+2\sqrt{3}}

Rationalizing the denominator,

 \\ :\implies\normalsize\sf\dfrac{1}{4+2\sqrt{3}}\times\dfrac{4-2\sqrt{3}}{4-2\sqrt{3}}

Now multiplying,

 \\ :\implies\normalsize\sf\dfrac{1(4-2\sqrt{3})}{(4+2\sqrt{3})\times(4-2\sqrt{3})}

Using the formula (a + b)(a - b) = (a² - b²) in the denominator,

 \\ :\implies\normalsize\sf\dfrac{4-2\sqrt{3}}{(4)^2-(2\sqrt{3})^2}

Removing the squares in denominator,

 \\ :\implies\normalsize\sf\dfrac{4-2\sqrt{3}}{16-(4\times3)}

After evaluation,

 \\ :\implies\normalsize\sf\dfrac{4-2\sqrt{3}}{16-12}

 \\ :\implies\normalsize\sf\dfrac{4-2\sqrt{3}}{4}

Taking 2 as common in numerator,

 \\ :\implies\normalsize\sf\dfrac{2(2-\sqrt{3})}{4}

 \\ :\implies\normalsize\sf\dfrac{\cancel{2}(2-\sqrt{3})}{\cancel{4}}

After evaluation,

 \\ :\implies\normalsize\sf\dfrac{2-\sqrt{3}}{2}

 \\ \normalsize\therefore\boxed{\bf\dfrac{2-\sqrt{3}}{2}}

The answer is (2 - 3)/2.

Similar questions