Math, asked by Tarunreddyss, 11 months ago

2 root 3-root2/2 root 3+root 2

Answers

Answered by Alpha716
4

Answer:

Step-by-step explanation:

Answered by Anonymous
8

(5 - 2√6)/5

Explanation :-

Simplify :-

We have to simplifly the value of the,

 \frac{2 \sqrt{3} -  \sqrt{2}}{2 \sqrt{3} +  \sqrt{2}  }

_________________________

Solution :-

We can simplify this question by rationalizing the denominator method.

In rationalizing the denominator method. The term which is in the denominator is multiplied by the numerator and denominatpr by changing the last sign of the denominator.

As,

 \frac{2 \sqrt{3} -  \sqrt{2}}{2 \sqrt{3} +  \sqrt{2}  }   \\  \\  \frac{2 \sqrt{3} -  \sqrt{2}}{2 \sqrt{3} +  \sqrt{2}  }  \times  \frac{2 \sqrt{3} -  \sqrt{2}}{2 \sqrt{3}  -  \sqrt{2}  }

Using Identity → (a + b) (a - b) = a² - b²

____________[Put Values]

 \frac{(2 \sqrt{3} -  \sqrt{2})(2 \sqrt{3} -  \sqrt{2})}{(2 \sqrt{3})^{2} -  {( \sqrt{2} )}^{2} } \\  \\  \frac{( {2 \sqrt{3})^{2}  - 2 \sqrt{3}( \sqrt{2}) -  \sqrt{2}(2 \sqrt{3}) -  { (\sqrt{2}) }^{2}   } }{12 - 2}  \\  \\  \frac{12 - 2 \sqrt{6 } - 2 \sqrt{6}  - 2 }{10}  \\  \\  \frac{10 - 4 \sqrt{6} }{10}  \\  \\   \frac{2(5 - 2 \sqrt{6} )}{10}  \\  \\  \frac{5 - 2 \sqrt{6} }{5}

Similar questions