2 - Root 5 / 2 + Root 5 = A Root 5 + B
Answers
Answered by
2
Answer:
Step-by-step explanation:
Answer:
a²-b²=-144√5
Explanation:
We have ,
i)a=(2-√5)/(2+√5)
Rationalising the denominator,weget
a = \frac{(2-\sqrt{5}))(2-\sqrt{5})}{(2+\sqrt{5})(2-\sqrt{5})}
=\frac{(2-\sqrt{5})^{2}}{2^{2}-(\sqrt{5})^{2}}
= \frac{(4+5-4\times\sqrt{5})}{4-5}
= \frac{(9-4\sqrt{5}}{(-1)} ----(1)
ii) b=(2+√5)/(2-√5)
Rationalising the denominator,we get
b = \frac{(2+\sqrt{5}))(2+\sqrt{5})}{(2-\sqrt{5})(2+\sqrt{5})}
=\frac{(2+\sqrt{5})^{2}}{2^{2}-(\sqrt{5})^{2}}
= \frac{(4+5+4\times\sqrt{5})}{4-5}
= \frac{(9+4\sqrt{5}}{(-1)} ----(2)
iii) a²-b²
=[(9-4√5)/(-1)]²-[
(9+4√5)/(-1)]²
=(9-4√5)²-(9+4√5)²
______________________
Weknow that,
(a-b)²-(a+b)²=-4ab
________________________
=-4×9×4√5
=-144√5
Similar questions