Math, asked by silrimchi, 1 year ago

2 root3- root5/2 root2+3 root3

Answers

Answered by mysticd
104

Answer:

\frac{2\sqrt{3}-5\sqrt{5}}{2\sqrt{2}+3\sqrt{3}}

=\frac{(4\sqrt{6}-18-10\sqrt{10}+15\sqrt{15})}{-19}

Explanation:

Given

\frac{2\sqrt{3}-5\sqrt{5}}{2\sqrt{2}+3\sqrt{3}}

Rationalising the denominator, we get

= \frac{(2\sqrt{3}-5\sqrt{5})(2\sqrt{2}-3\sqrt{3})}{(2\sqrt{2}+3\sqrt{3})(2\sqrt{2}-3\sqrt{3})}

=\frac{(4\sqrt{6}-18-10\sqrt{10}+15\sqrt{15})}{(2\sqrt{2})^{2}-(3\sqrt{3})^{2}}

=\frac{(4\sqrt{6}-18-10\sqrt{10}+15\sqrt{15})}{8-27}

=\frac{(4\sqrt{6}-18-10\sqrt{10}+15\sqrt{15})}{-19}

Therefore,

\frac{2\sqrt{3}-5\sqrt{5}}{2\sqrt{2}+3\sqrt{3}}

=\frac{(4\sqrt{6}-18-10\sqrt{10}+15\sqrt{15})}{-19}

••••

Answered by muscardinus
64

The value of \dfrac{2\sqrt{3}-\sqrt{5}  }{2\sqrt{2}+3\sqrt{3}  }  is \dfrac{4\sqrt{6}-18-2\sqrt{10}+3\sqrt{15}}{-19}.

Step-by-step explanation:

We need to simplify the given expression :

\dfrac{2\sqrt{3}-\sqrt{5}  }{2\sqrt{2}+3\sqrt{3}  }

Rationalizing both numerator and denominator, such that,

\dfrac{2\sqrt{3}-\sqrt{5}  }{2\sqrt{2}+3\sqrt{3}  }\times \dfrac{2\sqrt{2}-3\sqrt{3}}{2\sqrt{2}-3\sqrt{3}}

=\dfrac{4\sqrt{6}-18-2\sqrt{10}+3\sqrt{15}}{(2\sqrt{2})^2-(3\sqrt{3})^2  }

=\dfrac{4\sqrt{6}-18-2\sqrt{10}+3\sqrt{15}}{-19}

So, the value of \dfrac{2\sqrt{3}-\sqrt{5}  }{2\sqrt{2}+3\sqrt{3}  }  is \dfrac{4\sqrt{6}-18-2\sqrt{10}+3\sqrt{15}}{-19}.

Learn more,

Simplification

https://brainly.in/question/4380660

Similar questions