Math, asked by kavyasonu, 9 months ago

[2/root6+root2]tan25 +4sin25=[root a+root2]/2 find the value of "a"?

Answers

Answered by nirali160883
2

Answer:

2

+

3

2

6

+

6

+

3

6

2

6

+

2

8

3

\begin{gathered}i) \frac{2\sqrt{6}}{\sqrt{2}+\sqrt{3}}\\=\frac{2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\\=\frac{2\sqrt{6}(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}\\=\frac{2\sqrt{6}(\sqrt{3}-\sqrt{2})}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}\\=\frac{2\sqrt{6}(\sqrt{3}-\sqrt{2})}{3-2)}\\=2\sqrt{6}(\sqrt{3}-\sqrt{2})\\=2\sqrt{6}\times \sqrt{3} - 2\sqrt{6}\times \sqrt{2}\\=6\sqrt{2} - 4\sqrt{3} \:---(1)\end{gathered}

i)

2

+

3

2

6

=

3

+

2

2

6

=

(

3

+

2

)(

3

2

)

2

6

(

3

2

)

=

(

3

)

2

−(

2

)

2

2

6

(

3

2

)

=

3−2)

2

6

(

3

2

)

=2

6

(

3

2

)

=2

6

×

3

−2

6

×

2

=6

2

−4

3

−−−(1)

\begin{gathered}ii) \frac{6\sqrt{2}}{\sqrt{6}+\sqrt{3}}\\=\frac{6\sqrt{2}(\sqrt{6}-\sqrt{3})}{(\sqrt{6}+\sqrt{3})(\sqrt{6}-\sqrt{3})}\\=\frac{6\sqrt{2}(\sqrt{6}-\sqrt{3})}{(\sqrt{6})^{2}-(\sqrt{3})^{2}}\\=\frac{6\sqrt{2}(\sqrt{6}-\sqrt{3})}{6-3)}\\=\frac{6\sqrt{2}(\sqrt{6}-\sqrt{3})}{6-3}\\=\frac{6\sqrt{2}(\sqrt{6}-\sqrt{3})}{3}\\=2\sqrt{2}(\sqrt{6}-\sqrt{3})\\=4\sqrt{3}-2\sqrt{6}\:---(2)\end{gathered}

ii)

6

+

3

6

2

=

(

6

+

3

)(

6

3

)

6

2

(

6

3

)

=

(

6

)

2

−(

3

)

2

6

2

(

6

3

)

=

6−3)

6

2

(

6

3

)

=

6−3

6

2

(

6

3

)

=

3

6

2

(

6

3

)

=2

2

(

6

3

)

=4

3

−2

6

−−−(2)

\begin{gathered}iii)\frac{8\sqrt{3}}{\sqrt{6}+\sqrt{2}}\\=\frac{8\sqrt{2}(\sqrt{6}-\sqrt{2})}{(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})}\\=\frac{8\sqrt{2}(\sqrt{6}-\sqrt{2})}{(\sqrt{6})^{2}-(\sqrt{2}))^{2}}\\=\frac{8\sqrt{2}(\sqrt{6}-\sqrt{2})}{6-2}\\=\frac{8\sqrt{2}(\sqrt{6}-\sqrt{2})}{4}\\=2\sqrt{3}(\sqrt{6}-\sqrt{2})\\=6\sqrt{2}-4\:---(3)\end{gathered}

iii)

6

+

2

8

3

=

(

6

+

2

)(

6

2

)

8

2

(

6

2

)

=

(

6

)

2

−(

2

))

2

8

2

(

6

2

)

=

6−2

8

2

(

6

2

)

=

4

8

2

(

6

2

)

=2

3

(

6

2

)

=6

2

−4−−−(3)

/* According to the problem given

\frac{2\sqrt{6}}{\sqrt{2}+\sqrt{3}}+\frac{6\sqrt{2}}{\sqrt{6}+\sqrt{3}}-\frac{8\sqrt{3}}{\sqrt{6}+\sqrt{2}}

2

+

3

2

6

+

6

+

3

6

2

6

+

2

8

3

= 6\sqrt{2} - 4\sqrt{3} +4\sqrt{3}-2\sqrt{6}-(6\sqrt{2}-2\sqrt{6})=6

2

−4

3

+4

3

−2

6

−(6

2

−2

6

)

= 6\sqrt{2} - 4\sqrt{3} +4\sqrt{3}-2\sqrt{6}-6\sqrt{2}+2\sqrt{6}=6

2

−4

3

+4

3

−2

6

−6

2

+2

6

= 0=0

Therefore.,

\frac{2\sqrt{6}}{\sqrt{2}+\sqrt{3}}+\frac{6\sqrt{2}}{\sqrt{6}+\sqrt{3}}-\frac{8\sqrt{3}}{\sqrt{6}+\sqrt{2}}

2

+

3

2

6

+

6

+

3

6

2

6

+

2

8

3

\green {= 0}=0

•••♪

Answered by prabhapathak801
0

send

send correct answer

Similar questions