Math, asked by shambhavi39, 1 year ago

2 sec ^ 2A - sec^4A - 2 cosec ^ 2A + cosec ^4=cot ^4A - tan ^4A

Answers

Answered by ShuchiRecites
10

Magical Trignometery

To Prove → 2 sec²A - sec⁴A - 2 cosec²A + cosec⁴A = cot⁴A - tan⁴A

________________________

L.H.S → 2 sec²A - sec⁴A - 2 cosec²A + cosec⁴A

→ 2(tan²A + 1) - (tan²A + 1)² - 2(cot²A + 1) + (cot²A + 1)²

→ (tan²A + 1)(2 - tan²A - 1) - (cot²A + 1)(2 - cot²A - 1)

→ (tan²A + 1)(1 - tan²A) - (cot²A + 1)(1 - cot²A)

→ tan²A - tan⁴A + 1 - tan²A - cot²A + cot⁴A - 1 + cot²A

→ (tan²A - tan²A) + (1 - 1) + (cot²A - cot²A) + (cot⁴A - tan⁴A)

→ cot⁴A - tan⁴A = R.H.S

Hence Proved

Answered by Anonymous
7

\underline{\textbf{\large{To prove}}}

2 \sec^{2}A -  { \sec }^{4}A\:  -   2{ \csc}^{2} A +  { \csc }^{4} A  \\ =  { \cot}^{4} A -  { \tan}^{4} A

\underline{\textbf{proof :}}

LHS =

2 { \sec }^{2} A -  { \sec }^{4} A - 2 { \csc }^{2} A +  { \csc }^{4} A

 = 2 { \sec }^{2} A - 2 { \csc }^{2}A -  { \sec}^{4} A +  { \csc }^{4} A

 = (2 { \sec}^{2} A - 2 { \csc }^{2} A) - ( { \sec }^{4} A -   { \csc }^{4} A)

 = 2( { \sec }^{2} A -  { \csc }^{2}A) - ( { \sec }^{2}A +  { \csc }^{2}A)( { \sec}^{2}A -  { \csc }^{2}A)

 = ( { \sec }^{2}A -  { \csc }^{2}A)(2 -  { \sec }^{2}A -  { \csc }^{2}A)

 = [((1 +  { \tan }^{2}A) - (1 +  { \cot }^{2}A))(2 -  (1 +  { \tan }^{2}A) - (1 +  { \cot }^{2}A)]

 = (1 +  { \tan}^{2}A - 1  -  { \cot}^{2} A)(2  - 1 -  { \tan }^{2}A - 1 -  { \cot}^{2}A)

 = ( { \tan}^{2}A -  { \cot}^{2}A)( -  { \tan  }^{2}A\:  -  { \cot }^{2}A)

 =  - ( { \tan }^{2}A -  { \cot }^{2}A)( { \tan }^{2}A +  { \cot }^{2}A)

 =  - ( { \tan }^{4}A -  { \cot }^{4} A)

 =   - { \tan}^{4}A +  { \cot }^{4}A

 =  { \cot}^{4}A -  { \tan}^{2} A

= RHS

\underline{\textbf{Hence proved}}

Similar questions