Math, asked by anisashaikh7233, 7 months ago

(2) (seco + tano) (1 - sino) = coso​

Answers

Answered by Anonymous
0

Answer:

secO−tanO

secO+tanO

=(

cosO

1+sinO

)

2

Step-by-step explanation:

\begin{gathered}LHS =\frac{secO+tanO}{secO-tanO}\\=\frac{(secO+tanO)(secO+tanO)}{(secO-tanO)(secO+tanO)}\\=\frac{(secO+tanO)^{2}}{sec^{2}O-tan^{2}O}\end{gathered}

LHS=

secO−tanO

secO+tanO

=

(secO−tanO)(secO+tanO)

(secO+tanO)(secO+tanO)

=

sec

2

O−tan

2

O

(secO+tanO)

2

=\frac{(secO+tanO)^{2}}{1}=

1

(secO+tanO)

2

\begin{gathered}=(\frac{1}{cosO}+\frac{sinO}{cosO})^{2}\\=(\frac{1+sinO}{cosO})^{2}\\=RHS\end{gathered}

=(

cosO

1

+

cosO

sinO

)

2

=(

cosO

1+sinO

)

2

=RHS

Therefore,

\frac{secO+tanO}{secO-tanO}=(\frac{1+sinO}{cosO})^{2}

secO−tanO

secO+tanO

=(

cosO

1+sinO

)

2

Step-by-step explanation:

Mark me as brainliest answer

Similar questions