Math, asked by vihitha2720, 1 year ago

2. Show that the points (2,3,5),(-1,5,- 1) and (4,-3, 2) form a right angled isosceles triangle.​

Answers

Answered by Agastya0606
27

Given: The points of the triangle (2,3,5), (-1,5,- 1) and (4,-3, 2).

To find: Show that the points form a right angled isosceles triangle.

Solution:

  • Now we have given the points: A(2,3,5), B(-1,5,- 1) and C(4,-3, 2).
  • Let ABC be the triangle where AB be height, BC be hypotenuse and AC be base.
  • Now the length will be:

                AB = √(2+1)²+(3-5)²+(5+1)²

                AB = √9+4+36

                AB = √49

                AB = 7

  • Similarly :

                BC = √(-1-4)²+(5+3)²+(-1-2)²

                BC = √25+64+9

                BC = √98

  • Similarly :

                AC = √(4-2)²+(-3-3)²+(2-5)²

                AC = √4+36+9

                AC = √49

                AC = 7

  • So now, we can see that

                AB² + BC² = AC²

Answer:

          So therefore, ABC is right angled isosceles triangle.​

Answered by siddharthaeswar87
1

Answer:

Proof is given Below...

Step-by-step explanation:

Now we have given the points: A(2,3,5), B(-1,5,- 1) and C(4,-3, 2).

Let ABC be the triangle where AB be height, BC be hypotenuse and AC be base.

Now the length will be:

               AB = √(2+1)²+(3-5)²+(5+1)²

               AB = √9+4+36

               AB = √49

               AB = 7

Similarly :

               BC = √(-1-4)²+(5+3)²+(-1-2)²

               BC = √25+64+9

               BC = √98

Similarly :

               AC = √(4-2)²+(-3-3)²+(2-5)²

               AC = √4+36+9

               AC = √49

               AC = 7

So now, we can see that

               AB² + BC² = AC²

Answer:

Therefore, ABC is right angled isosceles triangle.​

Similar questions