Math, asked by CrimsonHeat, 1 year ago

2 sides AB and BC and the median AM of triangle ABC are respectively equal to side DE and EF and the median DN of triangle DEF .Prove that triangle ABC congruent to triangle DEF.​


shivansh2404: hii
CrimsonHeat: hlo!

Answers

Answered by Anonymous
21
________________________


In ΔABC, AM is the median to BC.


\bold{Therefore,}


BM=BC


In ΔDEF,


DN is the median to EF.


\bold{Therefore,}


EN=EF


\bold{However,}


BC=EF


\bold{Therefore,}


BC=EF


BM=EN (1)


In ΔABM and ΔDEN


AB = DE (Given)


BM = EN [From equation (1)]


AM = DN (Given)


\bold{Therefore,}


ΔABMΔDEN (SSS congruence rule)


ABM = DEN (By CPCT)


ABC = DEF(2)


\bold{Now,}


In ΔABC and ΔDEF,


AB = DE (Given)


ABC = DEF [From equation (2)]


BC = EF (Given)


ΔABCΔDEF (By SAS congruence rule)


________________________

BrainlyHeart751: Sahi answer Ko mark Kia brainliest
CrimsonHeat: yup
Answered by ayanzubair
1

△ABC and△PQR in which AB=PQ,BC=QR and AM=PN. 

Since AM and PN are median of triangles ABC and PQR respectively. 

Now, BC=QR ∣  Given 

⇒21BC=21QR ∣ Median divides opposite sides in two equal parts

BM=QN... (1) 

Now, in △ABM and△PQN we have 

AB=PQ  ∣ Given

BM=QN ∣  From (i)

and AM=PN ∣  Given

∴ By SSS criterion of congruence, we have 

△ABM≅△PQN, which proves (i) 

∠B=∠Q ... (2)  ∣ Since, corresponding parts of the congruent triangle are equal

Now, in  △ABC and△PQR we have 

AB=PQ ∣ Given

∠B=∠Q ∣ From (2)

BC=QR ∣ Given

∴ by SAS criterion of congruence, we have 

△ABC≅△PQR, which proves (ii)

Similar questions
Math, 1 year ago