Math, asked by aggarwalvaibhav241, 4 months ago


2. Simplify 92(1095 3) + 27log6 36 + 6/3log79​

Attachments:

Answers

Answered by mathdude500
2

Answer:

 \: \boxed{\bf \: 9^{\frac{1}{2 log_{5}(3) }}  + {27}^{ log_{6}(36) }  +  {3}^{ \frac{6}{ log_{7}(9) } } \:  =  \: 1077 \: }  \\

Step-by-step explanation:

Given logarithmic expression is

\sf \: 9^{\frac{1}{2 log_{5}(3) }} + {27}^{ log_{6}(36) }  +  {3}^{ \frac{6}{ log_{7}(9) } }  \\

can be rewritten as

\sf \:  =  \: 3^{2 \times \frac{1}{2 log_{5}(3) }} -  {27}^{ log_{6}( {6}^{2} ) }  +  {3}^{ \frac{6}{ log_{7}(9) } }  \\

We know,

\boxed{\begin{aligned}& \qquad \:\sf \:  log_{x}(y)  =  \dfrac{1}{ log_{y}(x) }  \qquad \: \\ \\& \qquad \:\sf \:  log_{ {x}^{m} }( {y}^{n} ) =  \frac{n}{m}  log_{x}(y)  \end{aligned}} \qquad \\

So, using this property, the above expression can be rewritten as

\sf \:  =  \: 3^{\frac{1}{log_{5}(3) }} +  {27}^{ 2}  +  {3}^{6 log_{9}(7) }  \\

can be rewritten as

\sf \:  =  \: 3^{ log_{3}(5) } + 729  +  {3}^{6 log_{ {3}^{2} }(7) }  \\

We know,

\boxed{\sf \:  {a}^{ log_{a}(x) }  = x \: } \\

So, using this result, the above expression can be rewritten as

\sf \:  =  \: 5 +  729  +  {3}^{6  \times  \frac{1}{2} log_{3}(7) }  \\

\sf \:  =  \: 734  +  {3}^{3 log_{3}(7) }  \\

\sf \:  =  \: 734  +  {3}^{ log_{3}( {7}^{3} ) }  \\

\sf \:  =  \: 734  +  {7}^{3}   \\

\sf \:  =  \: 734  + 343   \\

\sf \:  =  \: 1077 \\

Hence,

\implies\sf \: \boxed{\bf \: 9^{\frac{1}{2 log_{5}(3) }}  + {27}^{ log_{6}(36) }  +  {3}^{ \frac{6}{ log_{7}(9) } } \:  =  \: 1077 \: }  \\

\rule{190pt}{2pt}

Additional Information

\begin{gathered}\:  \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ log_{x}(x)  = 1}\\ \\ \bigstar \: \bf{ log_{x}( {x}^{y} )  = y}\\ \\ \bigstar \: \bf{ log_{ {x}^{z} }( {x}^{w} )  = \dfrac{w}{z} }\\ \\ \bigstar \: \bf{ log_{a}(b)  = \dfrac{logb}{loga} }\\ \\ \bigstar \: \bf{ {e}^{logx}  = x}\\ \\ \bigstar \: \bf{ {e}^{ylogx}  =  {x}^{y}}\\ \\ \bigstar \: \bf{log1 = 0}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions