Math, asked by Aashan, 1 year ago

2 (sin^6 theta + cos ^6)-3(sin^4 theta + cos ^4 theta) is independent of theta

Answers

Answered by 1402Aryan1402
2
2(sin⁶θ+cos⁶θ)-3(sin⁴θ+cos⁴θ)+1

= 2{(sin²θ)³+(cos²θ)³}-3{(sin²θ)²+(cos²θ)²}+1

= 2{(sin²θ+cos²θ)³-3sin²θcos²θ(sin²θ+cos²θ)}-3{(sin²θ+cos²θ)²-2sin²θcos²θ}+1

=2(1-3sin²θcos²θ)-3(1-2sin²θcos²θ)+1

=2-6sin²θcos²θ-3+6sin²θcos²θ+1

=-1+1

=0 (Proved)

hope this helps you
please follow me
Similar questions