2( sin ^6 theta + cos^6 theta ) - 3( sin^4 theta = cos^4 theta )+1 =0
Answers
Answered by
1
Answer:
Hey, this is the answer
Step-by-step explanation:
2(sin^6 theta+cos^6 theta)-3 (sin^4 theta+cos^4 theta)+1
2(sin^6 theta+cos^6 theta)-3 (sin^4 theta+cos^4 theta)+1=2{(sin^2 theta)^3+(cos^2 theta)^3} - 3 [(sin^2 theta)+(cos^2 theta)]+1
2(sin^6 theta+cos^6 theta)-3 (sin^4 theta+cos^4 theta)+1=2{(sin^2 theta)^3+(cos^2 theta)^3} - 3 [(sin^2 theta)+(cos^2 theta)]+1=2[(sin^2 theta+cos^2 theta)^3 -3 sin^2 theta cos^2 theta(sin^2 theta+cos^2 theta)] - 3 [(sin^2 theta+cos^2 theta)^2 - 2 sin^2 theta cos^2 theta]+1
=2(1-3 sin^2 theta cos^2 theta) - 3(1-2 sin^2 theta cos^2 theta)+1
=2-6 sin^2 theta cos^2 theta - 3 + 6 sin^2 theta cos^2 theta)+1
=-1+1
=0
Hence, proved....
Hope this ans will help u..
Mark my ans as brainliest.......
Similar questions